Laser Ablation of Silicon Nanoparticles and Their Use in Charge-Coupled Devices for UV Light Sensing via Wavelength-Shifting Properties

This study explores the controlled laser ablation and corresponding properties of silicon nanoparticles (Si NP) with potential applications in ultraviolet (UV) light sensing. The size distribution of Si NPs was manipulated by adjusting the laser scanning speed during laser ablation of a silicon target in a styrene solution. Characterization techniques, including transmission electron microscopy, Raman spectroscopy, and photoluminescence analysis, were employed to investigate the Si NP structural and photophysical properties. Si NP produced at a laser scanning speed of 3000 mm/s exhibited an average diameter of ~4 nm, polydispersity index of 0.811, and a hypsochromic shift in the Raman spectrum peak position. Under photoexcitation at 365 nm, these Si NPs emitted apparent white light, demonstrating their potential for optoelectronic applications. Photoluminescence analysis revealed biexponential decay behavior, suggesting multiple radiative recombination pathways within the nanoscale structure. Furthermore, a thin film containing Si NP was utilized as a passive filter for a 2nd generation CCD detector, expanding the functionality of the non-UV-sensitive detectors in optics, spectrometry, and sensor technologies.

[1]  J. Benlloch,et al.  Exploiting Cherenkov Radiation With BGO-Based Metascintillators , 2023, IEEE Transactions on Radiation and Plasma Medical Sciences.

[2]  Ziqing Li,et al.  Low-dimensional wide-bandgap semiconductors for UV photodetectors , 2023, Nature Reviews Materials.

[3]  Duc-Toan Nguyen,et al.  Enhancing Fire Detection Technology: A UV-Based System Utilizing Fourier Spectrum Analysis for Reliable and Accurate Fire Detection , 2023, Applied Sciences.

[4]  G. Hendrantoro,et al.  Optimization of a Fire Detection System Based on Radial Sector Scanning Using a UV Sensor , 2023, IEEE Sensors Letters.

[5]  Zeng Liu,et al.  A review of Ga2O3 deep-ultraviolet metal–semiconductor Schottky photodiodes , 2023, Journal of Physics D: Applied Physics.

[6]  N. Bader Preparation and Investigation of TiO2, SnSx, and SnO2 Thin Film Properties for Use as UV Detectors , 2022, BASRA JOURNAL OF SCIENCE.

[7]  Zhiguang Xu,et al.  Recent Advances in Sensors for Fire Detection , 2022, Sensors.

[8]  L. Velásquez-García,et al.  Review of in-space plasma diagnostics for studying the Earth’s ionosphere , 2022, Journal of Physics D: Applied Physics.

[9]  Yiran Wang,et al.  Preparation of Carbon-Coated Silicon Nanoparticles with Different Hydrocarbon Gases in Induction Thermal Plasma , 2021, The Journal of Physical Chemistry C.

[10]  R. Deshmukh,et al.  Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns , 2021, Nanoscale advances.

[11]  R. Ota Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging , 2021, Radiological Physics and Technology.

[12]  P. Malcovati,et al.  Thermal Sensors for Contactless Temperature Measurements, Occupancy Detection, and Automatic Operation of Appliances during the COVID-19 Pandemic: A Review , 2021, Micromachines.

[13]  J. Rothhardt,et al.  Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source , 2020, 2012.11244.

[14]  G. Borghi,et al.  FBK VUV-sensitive Silicon Photomultipliers for cryogenic temperatures , 2020 .

[15]  Ryo Hirose,et al.  Reduction of Dark Current in CMOS Image Sensor Pixels Using Hydrocarbon-Molecular-Ion-Implanted Double Epitaxial Si Wafers , 2020, Sensors.

[16]  Hung-Ying Chen,et al.  A self-powered ultraviolet photodiode using an amorphous InGaZnO/p-silicon nanowire heterojunction , 2020 .

[17]  Weiqi Wang,et al.  Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects , 2020 .

[18]  G. Gupta,et al.  Enlightening gallium nitride-based UV photodetectors , 2020 .

[19]  Wei Zheng,et al.  All-silicon photovoltaic detectors with deep ultraviolet selectivity , 2020, PhotoniX.

[20]  Jianping Meng,et al.  Schottky‐Contacted Nanowire Sensors , 2020, Advanced materials.

[21]  K. B. Korotchenko,et al.  Ultraviolet Cherenkov-Channeling Radiation by Protons , 2020 .

[22]  Daniel J. Blumenthal,et al.  Photonic integration for UV to IR applications , 2020 .

[23]  Hea-Lim Park,et al.  Retina‐Inspired Carbon Nitride‐Based Photonic Synapses for Selective Detection of UV Light , 2020, Advanced materials.

[24]  P. Béquin,et al.  Air plasma sensor for the measurement of sound pressure using millimetric and micrometric discharges , 2020 .

[25]  Mohamed-Slim Alouini,et al.  Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. , 2019, Optics express.

[26]  Fred A. Hamprecht,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[27]  Wei Zheng,et al.  Ultrahigh EQE (15%) Solar‐Blind UV Photovoltaic Detector with Organic–Inorganic Heterojunction via Dual Built‐In Fields Enhanced Photogenerated Carrier Separation Efficiency Mechanism , 2019, Advanced Functional Materials.

[28]  Nicola Zorzi,et al.  Silicon Photomultipliers: Technology Optimizations for Ultraviolet, Visible and Near-Infrared Range , 2019, Instruments.

[29]  B. Cabrera,et al.  Diamond detectors for direct detection of sub-GeV dark matter , 2019, Physical Review D.

[30]  D. Nygren,et al.  Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation , 2018, Scientific Reports.

[31]  K. Venkatakrishnan,et al.  Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis , 2017, Advanced science.

[32]  R. Jin,et al.  Photoluminescence from colloidal silicon nanoparticles: significant effect of surface , 2017 .

[33]  S. Albergo,et al.  CLASSiC: Cherenkov light detection with silicon carbide , 2017 .

[34]  K. Venkatakrishnan,et al.  Functionalized Stress Component onto Bio-template as a Pathway of Cytocompatibility , 2016, Scientific Reports.

[35]  H. -. Kim,et al.  Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. , 2016, ACS nano.

[36]  Yitai Qian,et al.  Solvothermal synthesis of a silicon hierarchical structure composed of 20 nm Si nanoparticles coated with carbon for high performance Li-ion battery anodes. , 2016, Dalton transactions.

[37]  S. Wada,et al.  Photophysical properties of luminescent silicon nanoparticles surface-modified with organic molecules via hydrosilylation , 2016, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[38]  S. Magill,et al.  Enhanced UV light detection using wavelength-shifting properties of Silicon nanoparticles , 2015, 1503.01383.

[39]  A. Joly,et al.  A new Cu–cysteamine complex: structure and optical properties , 2014 .

[40]  Jonghoon Choi,et al.  Electrochemical Synthesis of Red Fluorescent Silicon Nanoparticles , 2014 .

[41]  E. Aydil,et al.  Plasma-induced crystallization of silicon nanoparticles , 2013 .

[42]  Hiroki Kobayashi,et al.  Effects of Laser Energy Density on Silicon Nanoparticles Produced Using Laser Ablation in Liquid , 2013 .

[43]  A. Joly,et al.  On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS:Mn,Eu , 2013 .

[44]  Junwei Wei,et al.  Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths , 2012 .

[45]  G. Ozin,et al.  Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. , 2012, Nano letters.

[46]  G. Ma,et al.  Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. , 2011, Physical chemistry chemical physics : PCCP.

[47]  G. Faraci,et al.  Quantum size effects in Raman spectra of Si nanocrystals , 2011 .

[48]  G. Dearden,et al.  Silicon nanoparticles generated by femtosecond laser ablation in a liquid environment , 2010 .

[49]  M. Kumar,et al.  QUANTUM CONFINEMENT EFFECTS IN STRAINED SILICON MOSFETS , 2008 .

[50]  S. L. Westcott,et al.  X-ray luminescence of LaF3:Tb3+ and LaF3: Ce3+,Tb3+ water-soluble nanoparticles , 2008 .

[51]  Brian S. Mitchell,et al.  Mechanochemical Synthesis of Blue Luminescent Alkyl/Alkenyl‐Passivated Silicon Nanoparticles , 2007 .

[52]  G. Faraci,et al.  Modified Raman confinement model for Si nanocrystals , 2006 .

[53]  R. Gaitskell DIRECT DETECTION OF DARK MAT TER , 2004 .

[54]  I. Han,et al.  White light emitting silicon nanocrystals as nanophosphor , 2004 .

[55]  Salvatore Amoruso,et al.  Generation of silicon nanoparticles via femtosecond laser ablation in vacuum , 2004 .

[56]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[57]  Richard K. Baldwin,et al.  Solution reduction synthesis of surface stabilized silicon nanoparticles. , 2002, Chemical communications.

[58]  Wei Chen,et al.  Voltage tunable electroluminescence of CdTe nanoparticle light-emitting diodes. , 2002, Journal of nanoscience and nanotechnology.

[59]  T. Seong,et al.  Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. , 2001, Physical review letters.

[60]  Shui-Tong Lee,et al.  Large-scale synthesis of ultrafine Si nanoparticles by ball milling , 2000 .

[61]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[62]  Yining Huang,et al.  Pressure dependence of Mn2+ fluorescence in ZnS : Mn2+ nanoparticles , 2000 .

[63]  Sae Woo Nam,et al.  Cryogenic detectors based on superconducting transition-edge sensors for time-energy-resolved single-photon counters and for dark matter searches , 2000 .

[64]  C. Grupen,et al.  Physics of particle detection , 1998, physics/9906063.

[65]  P. Jerram,et al.  CMOS and CCD image sensors for space applications , 2020 .

[66]  G. Ozin,et al.  Switching‐On Quantum Size Effects in Silicon Nanocrystals , 2015, Advanced materials.

[67]  Yining Huang,et al.  Pressure dependence of Mn 2+ fluorescence in ZnS:Mn 2+ nanoparticles , 2000 .