Numerical Solution of PDEs
暂无分享,去创建一个
[1] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[2] William L. Briggs,et al. A multigrid tutorial , 1987 .
[3] Peter Deuflhard,et al. Scientific Computing with Ordinary Differential Equations , 2002 .
[4] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[5] Mingkui Chen. On the solution of circulant linear systems , 1987 .
[6] Silvia Bertoluzza,et al. Numerical Solutions of Partial Differential Equations , 2008 .
[7] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[8] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[9] H. Kreiss,et al. Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .
[10] Folkmar A. Bornemann,et al. An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..
[11] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[12] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[13] Gabriel N. Gatica,et al. A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..
[14] U. Nowark,et al. A fully adaptive MOL-treatment of parabolic 1-D problems with extrapolation techniques , 1996 .
[15] J. Z. Zhu,et al. The finite element method , 1977 .
[16] Nikolas Provatas,et al. Phase-Field Methods in Materials Science and Engineering , 2010 .
[17] L. Collatz. The numerical treatment of differential equations , 1961 .
[18] Shengtai Li,et al. Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement , 2004 .
[19] Martin Berzins,et al. A Method for the Spatial Discretization of Parabolic Equations in One Space Variable , 1990, SIAM J. Sci. Comput..
[20] J. A. C. Weideman. Computing the Dynamics of Complex Singularities of Nonlinear PDEs , 2003, SIAM J. Appl. Dyn. Syst..
[21] Wayne H. Enright,et al. Accurate approximate solution of partial differential equations at off-mesh points , 2000, TOMS.
[22] Shengtai Li,et al. Sensitivity analysis of differential-algebraic equations and partial differential equations , 2005, Comput. Chem. Eng..
[23] Jens Lang,et al. Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology , 2022 .
[24] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[25] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .
[26] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[27] P. Henrici. Fast Fourier Methods in Computational Complex Analysis , 1979 .