Numerical Solution of PDEs

We look at the method of lines using standard initial-value problem (IVP) software for stiff problems. Both spectral methods and compact finite differences are used for the spatial derivatives. We look briefly at the transverse method of lines, which instead uses standard boundary value problem (BVP) software that has automatic mesh selection. We also briefly consider Fourier transform methods for Poisson’s equation. ⊲

[1]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[2]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[3]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[4]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[5]  Mingkui Chen On the solution of circulant linear systems , 1987 .

[6]  Silvia Bertoluzza,et al.  Numerical Solutions of Partial Differential Equations , 2008 .

[7]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[8]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[9]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[10]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[11]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[12]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[13]  Gabriel N. Gatica,et al.  A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..

[14]  U. Nowark,et al.  A fully adaptive MOL-treatment of parabolic 1-D problems with extrapolation techniques , 1996 .

[15]  J. Z. Zhu,et al.  The finite element method , 1977 .

[16]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[17]  L. Collatz The numerical treatment of differential equations , 1961 .

[18]  Shengtai Li,et al.  Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement , 2004 .

[19]  Martin Berzins,et al.  A Method for the Spatial Discretization of Parabolic Equations in One Space Variable , 1990, SIAM J. Sci. Comput..

[20]  J. A. C. Weideman Computing the Dynamics of Complex Singularities of Nonlinear PDEs , 2003, SIAM J. Appl. Dyn. Syst..

[21]  Wayne H. Enright,et al.  Accurate approximate solution of partial differential equations at off-mesh points , 2000, TOMS.

[22]  Shengtai Li,et al.  Sensitivity analysis of differential-algebraic equations and partial differential equations , 2005, Comput. Chem. Eng..

[23]  Jens Lang,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology , 2022 .

[24]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[25]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[26]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[27]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .