Inverse problems arising in different synthetic aperture radar imaging systems and a general Bayesian approach for them

Synthetic Aperture Radar (SAR) imaging systems are nowadays very common technics of imaging in remote sensing and environment survey. There are different acquisition modes: spotlight, stripmap, scan; different geometries: mono-, bi- and multi-static; and varieties of specific applications: interferometric SAR (InSAR), polarimetric SAR etc. In this paper, first a common inverse problem framework for all of them is given, and then basics of SAR imaging and the classical deterministic inversion methods are presented. Aiming at overcoming the inadequacies of deterministic methods, a general probabilistic Bayesian estimation method is pioneered for solving image reconstruction problems. In particular, two priors which simply allow the automated determination of the hyperparameters in a Type-II likelihood framework are considered. Finally, the performances of the proposed methods on synthetic data.

[1]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[2]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[3]  Ali Mohammad-Djafari,et al.  Développement de méthodes de fusion et d'inversion de données SAR multistatique , 2009 .

[4]  Ali Mohammad-Djafari,et al.  Super-Resolution: A Short Review, A New Method Based on Hidden Markov Modeling of HR Image and Future Challenges , 2009, Comput. J..

[5]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2D spectral estimation methods , 1994, Defense, Security, and Sensing.

[6]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[7]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[8]  D. N. Held,et al.  Preliminary results from the NASA/JPL multifrequency, multipolarization synthetic aperture radar , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[9]  Ali Mohammad-Djafari,et al.  A Bayesian approach to Fourier Synthesis inverse problem with application in SAR imaging , 2011 .

[10]  Pierfrancesco Lombardo,et al.  Super-resolution of polarimetric SAR images of ship targets , 2003, Signal Process..

[11]  R. Sullivan Radar Foundations for Imaging and Advanced Concepts , 2004 .

[12]  D. Cook Spotlight Synthetic Aperture Radar , 2012 .

[13]  A. P. Anderson,et al.  Synthetic aperture tomographic (SAT) imaging for microwave diagnostics , 1982 .

[14]  J. Idier Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[15]  Zhixi Li Multi-location inverse synthetic aperture radar image fusion at the data level , 2007 .

[16]  Ali Mohammad-Djafari,et al.  Bayesian inference for inverse problems in signal and image processing and applications , 2006, Int. J. Imaging Syst. Technol..

[17]  B. Borden,et al.  Fundamentals of Radar Imaging , 2009 .

[18]  Ali Mohammad-Djafari,et al.  Fusion of multistatic synthetic aperture radar data to obtain a superresolution image , 2010 .

[19]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[20]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[21]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[22]  Alfonso Farina,et al.  Radar fusion to detect targets. Part II , 2002, Signal Process..

[23]  Hugh Griffiths,et al.  Advances in Bistatic Radar , 2007 .

[24]  Ali Mohammad-Djafari Inverse Problems in Imaging Systems and General Bayesian Inversion Framework , 2007 .

[25]  M. Jones The discrete Gerchberg algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[26]  J.M. Song,et al.  Fast Fourier transform of sparse spatial data to sparse Fourier data , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[27]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[28]  Yun Zhang,et al.  Understanding image fusion , 2004 .

[29]  W. Clem Karl,et al.  Superresolution and edge-preserving reconstruction of complex-valued synthetic aperture radar images , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[30]  Yu Ding,et al.  A fast back-projection algorithm for bistatic SAR imaging , 2002, Proceedings. International Conference on Image Processing.

[31]  R. F. Rawson,et al.  Polarimetric X/L/C-band SAR , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[32]  Søren Nørvang Madsen,et al.  Synthetic aperture radar interferometry-Invited paper , 2000 .

[33]  Margaret Cheney,et al.  Problems in synthetic-aperture radar imaging , 2009 .