Fuzzy information retrieval based on geometric-mean averaging operators

Fuzzy sets are very useful in information retrieval. In this paper, we point out that there are some drawbacks in the existing averaging operators (i.e., P-norm operators, infinite-one operators, and Waller-Kraft operators) to deal with AND and OR operations of fuzzy information retrieval. Furthermore, we present new averaging operators based on geometric-mean averaging (GMA) operators to deal with these drawbacks. We use some examples to compare the proposed GMA operators with the existing averaging operators. We also prove some properties of the proposed GMA operators. The proposed GMA operators can overcome the drawbacks of the existing averaging operators and easily determine an appropriate value of the parameter @a, where @a is either 0 or 1, for handling AND and OR operations of fuzzy information retrieval.

[1]  Myoung-Ho Kim,et al.  Ranking Documents in Thesaurus-Based Boolean Retrieval Systems , 1994, Inf. Process. Manag..

[2]  Abraham Bookstein,et al.  Fuzzy requests: An approach to weighted boolean searches , 1980, J. Am. Soc. Inf. Sci..

[3]  Gabriella Pasi,et al.  A decision making approach to relevance feedback in information retrieval: A model based on soft consensus dynamics , 1999 .

[4]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[5]  Myoung-Ho Kim,et al.  On the evaluation of Boolean operators in the extended Boolean retrieval framework , 1993, SIGIR.

[6]  Joon Ho Lee,et al.  Properties of extended Boolean models in information retrieval , 1994, SIGIR '94.

[7]  Gerard Salton,et al.  A Simple Blueprint for Automatic Boolean Query Processing , 1988, Inf. Process. Manag..

[8]  Dario Lucarella,et al.  FIRST: Fuzzy Information Retrieval SysTem , 1991, J. Inf. Sci..

[9]  Enrique Herrera-Viedma,et al.  An Information Retrieval Model with Ordinal Linguistic Weighted Queries Based on Two Weighting Elements , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  J. Kenney,et al.  Mathematics of statistics , 1940 .

[11]  Yong-Gi Kim,et al.  An improvement of Bandler-Kohout fuzzy information retrieval model using reduced set , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[12]  D. Kraft,et al.  An extended fuzzy linguistic approach to generalize Boolean information retrieval , 1994 .

[13]  J. Buckley,et al.  Fuzzy hierarchical analysis , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[14]  Mark P. Wachowiak,et al.  Aggregation operators for selection problems , 2002, Fuzzy Sets Syst..

[15]  Stephen E. Robertson,et al.  On the nature of fuzz: A diatribe , 1978, J. Am. Soc. Inf. Sci..

[16]  Taek Mu Kwon,et al.  A Degenerated Fuzzy-Number Processing System based on Artificial Neural Networks , 1995, Inf. Sci..

[17]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[18]  Sadaaki Miyamoto,et al.  Fuzzy Sets in Information Retrieval and Cluster Analysis , 1990, Theory and Decision Library.

[19]  Myoung-Ho Kim,et al.  Enhancing the fuzzy set model for high quality document rankings , 1992, Microprocess. Microprogramming.

[20]  Wladimir M. Sachs,et al.  An approach to associative retrieval through the theory of fuzzy sets , 1976, J. Am. Soc. Inf. Sci..

[21]  Anselm Spoerri,et al.  InfoCrystal: A visual tool for information retrieval , 1993, Proceedings Visualization '93.

[22]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[23]  Donald H. Kraft,et al.  Threshold values and Boolean retrieval systems , 1981, Inf. Process. Manag..

[24]  Myoung-Ho Kim,et al.  Analysis of Fuzzy Operators for High Quality Information Retrieval , 1993, Inf. Process. Lett..

[25]  Francisco Herrera,et al.  The ordered weighted Geometric operator: properties and application in MCDM problems , 2000 .

[26]  Francisco Herrera,et al.  A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making , 2003, Int. J. Intell. Syst..

[27]  Donald H. Kraft,et al.  Fuzzy Sets and Generalized Boolean Retrieval Systems , 1983, Int. J. Man Mach. Stud..

[28]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[29]  Dug Hun Hong,et al.  A convergence of geometric mean for T-related fuzzy numbers , 2001, Fuzzy Sets Syst..

[30]  U. Höhle Probabilistic uniformization of fuzzy topologies , 1978 .

[31]  Donald H. Kraft,et al.  A mathematical model of a weighted boolean retrieval system , 1979, Inf. Process. Manag..

[32]  Shyi-Ming Chen,et al.  A Prioritized Information Fusion Algorithm for Handling Multi-Criteria Fuzzy Decision-making Problems , 2002, FSKD.

[33]  Ulises Cortés,et al.  Knowledge engineering for a document retrieval system , 1990 .

[34]  Shyi-Ming Chen,et al.  A Knowledge-based Method for Fuzzy Query Processing for Document Retrieval , 1997, Cybern. Syst..

[35]  Duncan A. Buell A problem in information retrieval with fuzzy sets , 1985, J. Am. Soc. Inf. Sci..

[36]  M. Gupta,et al.  Theory of T -norms and fuzzy inference methods , 1991 .

[37]  F. Herrera,et al.  An intelligent news recommender agent for filtering and categorizing large volumes of text corpus , 2004 .

[38]  L. Valverde,et al.  On Some Logical Connectives for Fuzzy Sets Theory , 1983 .

[39]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[40]  Maria Elena Smith,et al.  Aspects of the P-Norm Model of Information Retrieval: Syntactic Query Generation, Efficiency, And Theoretical , 1990 .