Recent statistical methods for orientation data

The application of statistical methods for determining the areas of animal orientation and navigation are discussed. The method employed is limited to the two-dimensional case. Various tests for determining the validity of the statistical analysis are presented. Mathematical models are included to support the theoretical considerations and tables of data are developed to show the value of information obtained by statistical analysis.

[1]  S. Schach THE ASYMPTOTIC DISTRIBUTION OF SOME NON LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR' , 1969 .

[2]  G. S. Watson,et al.  A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE, , 1964 .

[3]  Michael A. Stephens,et al.  Multi-sample tests for the Fisher distribution for directions , 1969 .

[4]  Urs Maag,et al.  A k-sample analogue of Watson's U2 statistic , 1966 .

[5]  G. S. Watson,et al.  Statistical methods for the analysis of problems in animal orientation and certain biological rhythms , 1966 .

[6]  G. S. Watson,et al.  Equatorial distributions on a sphere , 1965 .

[7]  B. Ajne,et al.  A simple test for uniformity of a circular distribution , 1968 .

[8]  S T Emlen,et al.  Bird Migration: Influence of Physiological State upon Celestial Orientation , 1969, Science.

[9]  A goodness-of-fit statistic for the circle, with some comparisons , 1969 .

[10]  M. Stephens Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .

[11]  G. S. Watson,et al.  ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .

[12]  M. Tiku Chi-square approximations for the distributions of goodness-of-fit statistics UN2 and WN2 , 1965 .

[13]  K. Mardia A Bivariate Non-Parametric C-Sample Test , 1970 .

[14]  Stephens Ma Statistics connected with the uniform distribution: percentage points and application to testing for randomness of directions. , 1966 .

[15]  Kanti V. Mardia,et al.  A Non‐Parametric Test for the Bivariate Two‐Sample Location Problem , 1967 .

[16]  Small Sample Power of a Non‐Parametric Test for the Bivariate Two‐Sample Location Problem in the Normal Case , 1968 .

[17]  J. Wishart Statistical tables , 2018, Global Education Monitoring Report.

[18]  Michael A. Stephens,et al.  Multisample Tests for the von Mises Distribution , 1972 .

[19]  G. S. Watson Another test for the uniformity of a circular distribution. , 1967, Biometrika.

[20]  Michael A. Stephens,et al.  Tests for Randomness of Directions against Two Circular Alternatives , 1969 .

[21]  S. Schach Nonparametric Tests Of Location For Circular Distributions , 1967 .

[22]  G. S. Watson,et al.  The Statistics of Orientation Data , 1966, The Journal of Geology.

[23]  M. Stephens,et al.  Tests for the dispersion and for the modal vector of a distribution on a sphere. , 1967, Biometrika.

[24]  On Hodges's bivariate sign test and a test for uniformity of a circular distribution , 1969 .

[25]  H. Vogt Zur Definition und Schätzung von Mittelwerten für zufällige Variable auf der Sphäre , 1970 .

[26]  L. R. Mewaldt,et al.  Behavior of sparrows of the genus Zonotrichia, in orientation cages during the lunar cycle. , 2010, Zeitschrift fur Tierpsychologie.

[27]  A. Gould,et al.  Some relationships between the normal and von Mises distributions. , 1967, Biometrika.