Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres.

[1]  A. Mahmoud,et al.  Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[2]  D. Spoljaric,et al.  Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition , 2019, International journal of pharmaceutics.

[3]  Ariel D. Quiroga,et al.  Chitosan-hydroxypropyl methylcellulose tioconazole films: A promising alternative dosage form for the treatment of vaginal candidiasis. , 2019, International journal of pharmaceutics.

[4]  M. Wesołowski,et al.  Interactions Between Paracetamol and Hypromellose in the Solid State , 2019, Front. Pharmacol..

[5]  K. Winnicka,et al.  Spray-dried nanoparticle-loaded pectin microspheres for dexamethasone nasal delivery , 2019, Drying Technology.

[6]  Xiuhua Zhao,et al.  Preparation, characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability. , 2018, Carbohydrate polymers.

[7]  R. Reiter,et al.  The multiple functions of melatonin in regenerative medicine , 2018, Ageing Research Reviews.

[8]  C. Kiparissides,et al.  Recent advances in carrier mediated nose‐to‐brain delivery of pharmaceutics , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  Daniel A. Davis,et al.  Personalized Medicine in Nasal Delivery: The Use of Patient-Specific Administration Parameters To Improve Nasal Drug Targeting Using 3D-Printed Nasal Replica Casts. , 2018, Molecular pharmaceutics.

[10]  Ivan Pepić,et al.  An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems , 2018, Journal of pharmaceutical and biomedical analysis.

[11]  E. Zironi,et al.  In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates , 2018, Drug delivery.

[12]  Mengrui Liu,et al.  Progress in brain targeting drug delivery system by nasal route , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[13]  J. Lovrić,et al.  Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. , 2017, International journal of pharmaceutics.

[14]  A. H. Salama,et al.  Reconstitutable spray dried ultra-fine dispersion as a robust platform for effective oral delivery of an antihyperlipidemic drug. , 2017, International journal of pharmaceutics.

[15]  P. Russo,et al.  Opportunity and challenges of nasal powders: Drug formulation and delivery , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[16]  Edyta Pindelska,et al.  Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques , 2017, Advanced drug delivery reviews.

[17]  J. Lulek,et al.  The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids. , 2017, Colloids and surfaces. B, Biointerfaces.

[18]  F. Pirot,et al.  Formulation, stability testing, and analytical characterization of melatonin-based preparation for clinical trial , 2017, Journal of pharmaceutical analysis.

[19]  O. Chambin,et al.  Pellets based on polyuronates: Relationship between gelation and release properties , 2017 .

[20]  H. Katsumi,et al.  Nasal Drug Absorption from Powder Formulations: Effect of Fluid Volume Changes on the Mucosal Surface. , 2017, Biological & pharmaceutical bulletin.

[21]  M. Klarić,et al.  Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[22]  R. Scherließ,et al.  Carrier-based dry powder formulation for nasal delivery of vaccines utilizing BSA as model drug , 2016 .

[23]  P. Giunchedi,et al.  Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review , 2016 .

[24]  M. Gümüşderelioğlu,et al.  Melatonin/HPβCD complex: Microwave synthesis, integration with chitosan scaffolds and inhibitory effects on MG-63CELLS. , 2015, International journal of pharmaceutics.

[25]  P. Mura Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. , 2015, Journal of pharmaceutical and biomedical analysis.

[26]  J. Rosenberg,et al.  Clinical pharmacokinetics of melatonin: a systematic review , 2015, European Journal of Clinical Pharmacology.

[27]  P. Cooke,et al.  Characterization of the global structure of low methoxyl pectin in solution , 2015 .

[28]  S. Verma,et al.  Wetting Kinetics: an Alternative Approach Towards Understanding the Enhanced Dissolution Rate for Amorphous Solid Dispersion of a Poorly Soluble Drug , 2015, AAPS PharmSciTech.

[29]  R. Chadha,et al.  Drug-excipient compatibility screening--role of thermoanalytical and spectroscopic techniques. , 2014, Journal of pharmaceutical and biomedical analysis.

[30]  I. Kosalec,et al.  Development of low methoxy amidated pectin-based mucoadhesive patches for buccal delivery of triclosan: effect of cyclodextrin complexation. , 2012, Carbohydrate polymers.

[31]  P. Djupesland Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review , 2012, Drug Delivery and Translational Research.

[32]  M. Šegvić Klarić,et al.  Mupirocin calcium microencapsulation via spray drying: feed solvent influence on microparticle properties, stability and antimicrobial activity , 2011, Drug development and industrial pharmacy.

[33]  Mandip Singh,et al.  Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats , 2011, Journal of drug targeting.

[34]  Bo Nyström,et al.  Characterization of polyelectrolyte features in polysaccharide systems and mucin. , 2010, Advances in colloid and interface science.

[35]  Liang Tang,et al.  The application of mucoadhesive polymers in nasal drug delivery , 2010 .

[36]  D. Voinovich,et al.  Melatonin-loaded lecithin/chitosan nanoparticles: physicochemical characterisation and permeability through Caco-2 cell monolayers. , 2009, International journal of pharmaceutics.

[37]  P. Watts,et al.  PecSys: in situ gelling system for optimised nasal drug delivery , 2009 .

[38]  T. Purewal,et al.  Development and testing of particulate formulations for the nasal delivery of antibodies. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[39]  M. Deli,et al.  Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. , 2009, Biochimica et biophysica acta.

[40]  M. Jug,et al.  Development of a Cyclodextrin-Based Nasal Delivery System for Lorazepam , 2008 .

[41]  A. Mauro,et al.  Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. , 2007, Journal of nanoscience and nanotechnology.

[42]  J. Nunthanid,et al.  Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[43]  A. Bansal,et al.  Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. , 2006, Journal of pharmaceutical sciences.

[44]  D. Durand,et al.  Calcium and acid induced gelation of (amidated) low methoxyl pectin , 2006 .

[45]  Valentina Iannuccelli,et al.  Enhancement of melatonin photostability by encapsulation in lipospheres. , 2006, Journal of pharmaceutical and biomedical analysis.

[46]  R. Kinget,et al.  Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. , 2005, Advanced drug delivery reviews.

[47]  M. Tafaghodi,et al.  Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. , 2004, International journal of pharmaceutics.

[48]  O. Corrigan,et al.  Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices--influence of agitation rate and dissolution medium composition. , 2004, International journal of pharmaceutics.

[49]  M. Bogataj,et al.  The correlation between zeta potential and mucoadhesion strength on pig vesical mucosa. , 2003, Biological & pharmaceutical bulletin.

[50]  M. R. Bailey,et al.  The influence of breathing patterns on particle deposition in a nasal replicate cast , 2002 .

[51]  S. Davis,et al.  Clearance characteristics of chitosan based formulations in the sheep nasal cavity. , 2001, International journal of pharmaceutics.

[52]  Lena Pereswetoff-Morath,et al.  Microspheres as nasal drug delivery systems. , 1998, Advanced drug delivery reviews.

[53]  Dimitrios G Fatouros,et al.  Smart materials: in situ gel-forming systems for nasal delivery. , 2016, Drug discovery today.

[54]  H. Leuenberger,et al.  Preparation of dry powder inhalation by surface treatment of lactose carrier particles. , 2003, Chemical & pharmaceutical bulletin.