Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking

Abstract. Optical coherence tomography (OCT)-based optical microangiography (OMAG) is a high-resolution, noninvasive imaging technique capable of providing three-dimensional in vivo blood flow visualization within microcirculatory tissue beds in the eye. Although the technique has demonstrated early clinical utility by imaging diseased eyes, its limited field of view (FOV) and the sensitivity to eye motion remain the two biggest challenges for the widespread clinical use of the technology. Here, we report the results of retinal OMAG imaging obtained from a Zeiss Cirrus 5000 spectral domain OCT system with motion tracking capability achieved by a line scan ophthalmoscope (LSO). The tracking LSO is able to guide the OCT scanning, which minimizes the effect of eye motion in the final results. We show that the tracking can effectively correct the motion artifacts and remove the discontinuities and distortions of vascular appearance due to microsaccade, leading to almost motion-free OMAG angiograms with good repeatability and reliability. Due to the robustness of the tracking LSO, we also show the montage scan protocol to provide unprecedented wide field retinal OMAG angiograms. We experimentally demonstrate a 12×16  mm2 retinal OMAG angiogram acquired from a volunteer, which is the widest FOV retinal vasculature imaging up to now in the community.

[1]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[2]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[3]  T N CORNSWEET,et al.  New technique for the measurement of small eye movements. , 1958, Journal of the Optical Society of America.

[4]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[5]  Lelia Adelina Paunescu,et al.  Tracking optical coherence tomography. , 2004, Optics letters.

[6]  Ruikang K. Wang,et al.  High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. , 2010, Journal of biomedical optics.

[7]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[8]  Ruikang K. Wang,et al.  Swept-source OCT Angiography of the Retinal Vasculature using Intensity Differentiation Based OMAG Algorithms , 2015 .

[9]  Ruikang K. Wang,et al.  Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Carlo Tomasi,et al.  Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography , 2013, Biomedical optics express.

[11]  P. Sharp,et al.  The scanning laser ophthalmoscope. , 1997, Physics in medicine and biology.

[12]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[13]  R L Radius,et al.  Anatomy of the retinal nerve fiber layer. , 1981, Investigative ophthalmology & visual science.

[14]  Austin Roorda,et al.  Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO , 2012, Biomedical optics express.

[15]  Jeffrey B. Mulligan,et al.  Recovery of motion parameters from distortions in scanned images , 1997 .

[16]  Ruikang K. Wang,et al.  Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System , 2012, Int. J. Biomed. Imaging.

[17]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[18]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[19]  Mei Chen,et al.  Correcting Motion Artifacts in Retinal Spectral Domain Optical Coherence Tomography via Image Registration , 2009, MICCAI.

[20]  R. W. Ditchburn,et al.  Involuntary eye movements during fixation , 1953, The Journal of physiology.

[21]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[22]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[23]  Johannes F de Boer,et al.  Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. , 2012, Optics express.

[24]  G. Timberlake,et al.  A Novel Method for Measuring Saccade Profiles Using the Scanning Laser Ophthalmoscope , 1996, Vision Research.

[25]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[26]  Ruikang K. Wang,et al.  Swept-source OCT angiography of macular telangiectasia type 2. , 2014, Ophthalmic surgery, lasers & imaging retina.

[27]  R. Leitgeb,et al.  Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. , 2011, Optics express.

[28]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[29]  H D Crane,et al.  Accurate two-dimensional eye tracker using first and fourth Purkinje images. , 1973, Journal of the Optical Society of America.

[30]  H D Crane,et al.  Generation-V dual-Purkinje-image eyetracker. , 1985, Applied optics.

[31]  R. D. Ferguson,et al.  Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope. , 2004, Optics express.

[32]  Byeong Ha Lee,et al.  Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography. , 2013, Investigative ophthalmology & visual science.

[33]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[34]  Robert H. Webb,et al.  Fundus tracking with the scanning laser ophthalmoscope. , 1987, Applied optics.

[35]  Hiroshi Ishikawa,et al.  Advanced scanning methods with tracking optical coherence tomography. , 2005, Optics express.

[36]  Daniel X Hammer,et al.  Angiography with a multifunctional line scanning ophthalmoscope. , 2012, Journal of biomedical optics.

[37]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[38]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[39]  Ruikang K. Wang,et al.  Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue , 2006 .

[40]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[41]  Ruikang K. Wang,et al.  Feasibility to Image Retinal Microvasculature in Subjects With Diabetic Retinopathy Using Zeiss Cirrus OCT Prototype System , 2014 .

[42]  Austin Roorda,et al.  Real-time eye motion compensation for OCT imaging with tracking SLO , 2012, Biomedical optics express.

[43]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.