Some Algorithmic aspects of Subspace Identification with Inputs

It has been experimentally verified that most commonly used subspace methods for identification of linear state-space systems with exogenous inputs may, in certain experimental conditions, run into ill-conditioning and lead to ambiguous results. An analysis of the critical situations has lead us to propose a new algorithmic structure which could be used either to test difficult cases and/or to implement a suitable combination of new and old algorithms presented in the literature to help fixing the problem.

[1]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[2]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[3]  R. Ober Balanced Canonical Forms , 1996 .

[4]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[5]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[6]  M. Moonen,et al.  QSVD approach to on- and off-line state-space identification , 1990 .

[7]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  G. Picci,et al.  On the Stochastic Realization Problem , 1979 .

[10]  Giorgio Picci,et al.  Stochastic realization with exogenous inputs and 'subspace-methods' identification , 1996, Signal Process..

[11]  P. Faurre Stochastic Realization Algorithms , 1976 .

[12]  Giorgio Picci,et al.  Realization of stochastic systems with exogenous inputs and subspace identification methods , 1999, Autom..

[13]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[14]  Tohru Katayama,et al.  A comparison of some subspace identification methods , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[15]  Giorgio Picci,et al.  Oblique Splitting Subspaces and Stochastic Realization with Inputs , 1997 .

[16]  D. Bauer Some asymptotic theory for the estimation of linear systems using maximum likelihood methods or subspace algorithms , 1998 .

[17]  H. Akaike Canonical Correlation Analysis of Time Series and the Use of an Information Criterion , 1976 .

[18]  Roberto Guidorzi,et al.  Invariants and canonical forms for systems structural and parametric identification , 1981, Autom..

[19]  Alessandro Chiuso,et al.  Error Analysis of Certain Subspace Methods , 2000 .

[20]  H. Akaike Stochastic theory of minimal realization , 1974 .

[21]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[22]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[23]  B. Wahlberg,et al.  Counterexample to General Consistency of Subspace System Identification Methods , 1997 .

[24]  G. Picci Geometric methods in stochastic realization and system identification , 1996 .

[25]  H. Akaike Markovian Representation of Stochastic Processes by Canonical Variables , 1975 .

[26]  Dietmar Bauer Asymptotic Efficiency of CCA Subspace Methods in the Case of no Exogenous Inputs , 2000 .

[27]  Anders Lindquist,et al.  Canonical correlation analysis, approximate covariance extension, and identification of stationary time series , 1996, Autom..

[28]  Alessandro Chiuso,et al.  Comparison of Two Subspace Identification Methods for Combined Deterministic-Stochastic System: Part 2 , 2000 .

[29]  Subspace identification by orthogonal decomposition , 1999 .

[30]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[31]  G. Ruckebusch Representations markoviennes de processus gaussiens stationnaires et applications statistiques , 1978 .

[32]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[33]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[34]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[35]  Giorgio Picci,et al.  Statistical Properties of Certain Subspace Identification Methods , 1997 .

[36]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[37]  Alessandro Chiuso,et al.  Probing inputs for subspace identification , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[38]  Giorgio Picci,et al.  A Simple “Subspace” Identification Method with Exogenous Inputs , 1996 .

[39]  G. Picci Stochastic realization of Gaussian processes , 1976, Proceedings of the IEEE.

[40]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[41]  A. Lindquist,et al.  On the structure of state-space models for discrete-time stochastic vector processes , 1984 .

[42]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[43]  Petre Stoica,et al.  Weighted LS and TLS approaches yield asymptotically equivalent results , 1995, Signal Process..