Molecular electronics in silico

Assuming with Feynman that single atoms can be used as elementary memory cells, this would give a maximum density of information units of the order of 1015 cm-2 for a planar arrangement. If the chemical composition of the surface is fixed and any information change is simply associated with an electronic or conformational change between two possible states of any given surface atom, the above arrangement would result in a maximum information density of just 1 Pbit cm-2 – peta-scale integration (PSI). The manipulation of information on the atomic scale, however, requires the use of macroscopic-scale apparatuses that may, to date, be operated only at a negligible rate. Fundamental quantum mechanical considerations show instead that electrons can be configured with bit densities of the order of 1012 cm-2 (tera-scale integration, TSI); moreover, electron presence or flow can be controlled and sensed by already existing mesoscopic-scale apparatuses in giga-scale integration (GSI). Even though there is no clear method to enable the full exploitation of the performances of such devices, the TSI density is within the reach of the present technology. Rather than scaling down conventional CMOS (complementary metal–oxide–semiconductor) circuits, TSI may almost be achieved via a hybrid architecture where a silicon-based CMOS circuit controls a nanoscopic crossbar structure hosting in each cross-point a collection of functional molecules able to mimic by themselves the behaviour of a memory cell. The hybrid (silicon + molecules) route, however, poses severe problems. The following ones have been identified as the most important: (i) the setting up of an economically sustainable technology for the preparation of cross-points with density higher than 1011 cm-2; (ii) the demultiplexing of the addressing lines to allow their linkage to the CMOS circuit; (iii) the design, synthesis, and electrical characterization of the functional molecules; and (iv) the grafting via batch processing of the functional molecules to the cross-points forming the crossbar. This paper is devoted to discuss the severe challenges posed by the hybrid architecture and to present the solutions that have been found.

[1]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[2]  James M Tour,et al.  En route to surface-bound electric field-driven molecular motors. , 2003, The Journal of organic chemistry.

[3]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[4]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[5]  C. Hu,et al.  A spacer patterning technology for nanoscale CMOS , 2002 .

[6]  Valeria Casuscelli,et al.  Steps farther towards micro-nano-mole integration via the multispacer patterning technique , 2007 .

[7]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[8]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  Gianfranco Cerofolini Realistic limits to computation I. Physical limits , 2006 .

[10]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[11]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[12]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[13]  R. Waser,et al.  Resistive switching of rose bengal devices: A molecular effect? , 2006 .

[14]  G. Cerofolini,et al.  A hybrid micro-nano-molecular route for nonvolatile memories , 2006 .

[15]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[16]  Y. Chabal,et al.  Ideal hydrogen termination of the Si (111) surface , 1990 .

[17]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[18]  G. Giorgi,et al.  Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[19]  James M. Tour,et al.  Theoretical Study of a Molecular Resonant Tunneling Diode , 2000 .

[20]  T. Mayer,et al.  Vapor-Phase Adsorption Kinetics of 1-Decene on H-Terminated Si(100) , 2003 .

[21]  Zhenan Bao,et al.  Control of topography, stress and diffusion at molecule–metal interfaces , 2005, cond-mat/0510371.

[22]  J. Rasson,et al.  Noise filtering and deconvolution of XPS data by wavelets and Fourier transform , 2004 .

[23]  Ernst J. R. Sudhölter,et al.  An Improved Method for the Preparation of Organic Monolayers of 1-Alkenes on Hydrogen-Terminated Silicon Surfaces , 1999 .

[24]  A. Modelli,et al.  Combined IR and XPS analysis of the native (1 0 0) surface of single‐crystalline silicon after HFaq etching , 2007 .

[25]  M. Stutzmann,et al.  Hydrosilylation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: A comparative x-ray photoelectron spectroscopy study , 2003 .

[26]  E. H. Hauge,et al.  Tunneling times: a critical review , 1989 .

[27]  P. Pfeifer,et al.  Generalized time-energy uncertainty relations and bounds on lifetimes of resonances , 1995 .

[28]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[29]  Gianfranco Cerofolini,et al.  Realistic limits to computation. II. The technological side , 2006 .

[30]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[31]  Frank J. Vergeldt,et al.  Monolayers of 1-Alkynes on the H-Terminated Si(100) Surface , 2000 .

[32]  Massimo Grattarola,et al.  ISFET-Like Devices Coupled to Neuroblastoma Cells: Cytometric and Electrical Characterization , 1989 .

[33]  Richard F. Heck,et al.  Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives , 1968 .

[34]  Jean-Paul Rasson,et al.  XPS data analysis via Wavelets and Fourier Transform. , 2004 .

[35]  Amar H. Flood,et al.  Nanoelectronic devices from self-organized molecular switches , 2005 .

[36]  D. Kahng,et al.  A new "Hot electron" triode structure with semiconductor-metal emitter , 1962, IRE Transactions on Electron Devices.

[37]  R. Hamers,et al.  Interaction of π-Conjugated Organic Molecules with π-Bonded Semiconductor Surfaces: Structure, Selectivity, and Mechanistic Implications , 2000 .

[38]  Ken W. West,et al.  Fabrication of extremely narrow metal wires , 2000 .

[39]  A. Hiraki,et al.  Formation of SiH bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment , 1984 .

[40]  Roberto Bez,et al.  Innovative technologies for high density non-volatile semiconductor memories , 2005 .

[41]  G. Cerofolini,et al.  Residual non-idealities in the almost ideal silicon p-n junction , 1990 .

[42]  G. Cerofolini,et al.  Heavy Metal Gettering in Silicon‐Device Processing , 1980 .

[43]  R. Hamers,et al.  Structure and Bonding of Ordered Organic Monolayers of 1,5-Cyclooctadiene on the Silicon(001) Surface , 1997 .

[44]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[45]  Hylke B. Akkerman,et al.  Towards molecular electronics with large-area molecular junctions , 2006, Nature.

[46]  I. Fragalà,et al.  Functionalization of atomically flat, dihydrogen terminated, 1×1 (1 0 0) silicon via reaction with 1-alkyne , 2005 .

[47]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[48]  C. Dimitrakopoulos,et al.  Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators , 1999, Science.

[49]  T. Sarna,et al.  Rose bengal radicals and their reactivity , 1990 .

[50]  G. Ferla,et al.  Toward a Hybrid Micro-nanoelectronics , 2002 .

[51]  R. Hamers,et al.  An X-ray photoelectron spectroscopy study of the bonding of unsaturated organic molecules to the Si(001) surface , 1998 .

[52]  C. Galati,et al.  Functionalization of the (100) surface of hydrogen-terminated silicon via hydrosilation of 1-alkyne , 2003 .

[53]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[54]  Fredrik Jakobsson,et al.  Towards addressable organic impedance switch devices , 2005 .

[55]  C. Galati,et al.  Quantitative XPS analysis of hydrosilated 1‐alkene and 1‐alkyne at terraced, dihydrogen‐terminated, 1 × 1 (100) silicon , 2006 .

[56]  A. Vologodskii Energy transformation in biological molecular motors , 2006 .

[57]  G. Cerofolini,et al.  Gold solubility in silicon and gettering by phosphorus , 1978 .

[58]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[59]  A. Kahn,et al.  How do electronic carriers cross Si-bound alkyl monolayers? , 2005, Physical review letters.

[60]  G. Cerofolini,et al.  A comparison of gettering techniques for very large scale integration , 1984 .

[61]  L. Renna,et al.  A hybrid approach to nanoelectronics , 2005 .

[62]  M. Reed Prospects for Molecular-Scale Electronics , 2001 .

[63]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[64]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[65]  J. Tour,et al.  Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays , 2005 .

[66]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[67]  Jeffrey Bokor,et al.  Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography , 2003 .

[68]  Heinrich Rohrer A conversation with Dr. Heinrich Rohrer: STM co-inventor and one of the founding fathers of nanoscience. Interview by Paul S. Weiss. , 2007, ACS nano.

[69]  C. A. Roth Silylation of Organic Chemicals , 1972 .

[70]  Dominik Horinek,et al.  Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. , 2004, Journal of the American Chemical Society.

[71]  J. Fenn,et al.  A Conversation with , 2009 .

[72]  O. Seitz,et al.  Importance of monolayer quality for interpreting current transport through organic molecules: alkyls on oxide-free Si. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[73]  M. Linford,et al.  Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study , 1999 .

[74]  G. Cerofolini,et al.  Mechanism of non‐Shockley conduction in almost ideal silicon junction diodes , 1984 .

[75]  Ben L. Feringa,et al.  In control of switching, motion, and organization , 2003 .

[76]  B. Santo,et al.  Solid State , 2012 .

[77]  Jeffrey Bokor,et al.  Sublithographic nanofabrication technology for nanocatalysts and DNA chips , 2003 .

[78]  A. Houlton,et al.  Direct functionalization of silicon via the self-assembly of alcohols , 1995 .

[79]  C. Galati,et al.  Grafting of 1-alkynes to hydrogen-terminated (100)silicon surfaces , 2005 .

[80]  L. Renna,et al.  Monolayers of simple organic molecules on silicon studied by surface tools , 2002 .

[81]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[82]  L. Meda,et al.  Chemistry at silicon crystalline surfaces , 1995 .

[83]  Anirban Bandyopadhyay,et al.  Large conductance switching and memory effects in organic molecules for data-storage applications , 2003 .

[84]  L. Meda,et al.  Physical Chemistry of, in and on Silicon , 1989 .

[85]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[86]  A. Pal,et al.  Large conductance switching and binary operation in organic devices: Role of functional groups , 2003 .

[87]  Cees Dekker,et al.  Motor Proteins at Work for Nanotechnology , 2007, Science.

[88]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[89]  G. Cerofolini A study of the ionic route for hydrogen terminations resulting after SiO2 etching by concentrated aqueous solutions of HF , 1998 .

[90]  M. Brook Silicon in Organic, Organometallic, and Polymer Chemistry , 1999 .

[91]  D. C. Flanders,et al.  Generation of <50 nm period gratings using edge defined techniques , 1983 .

[92]  C. Galati,et al.  The addition of functional groups to silicon via hydrosilation of 1-alkynes at hydrogen-terminated, 1 × 1 reconstructed, (100) silicon surfaces , 2003 .

[93]  D K Aswal,et al.  Self assembled monolayers on silicon for molecular electronics. , 2006, Analytica chimica acta.

[94]  G. Cerofolini,et al.  Current‐voltage characteristics of ideal silicon diodes in the range 300–400 K , 1985 .

[95]  A. Heeger,et al.  Electrochemical studies of self-doped conducting polymers: verification of the cation-popping doping mechanism , 1989 .

[96]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[97]  N. Spinella,et al.  Formation of terraced, nearly flat, hydrogen-terminated, (100) Si surfaces after high-temperature treatment inH2of single-crystalline silicon , 2005 .

[98]  J. Tour,et al.  Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. , 2004, Journal of the American Chemical Society.

[99]  Stacey F. Bent,et al.  Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects , 2002 .

[100]  T. Yamazaki,et al.  Silicon (001) surface after annealing in hydrogen ambient , 1996 .

[101]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[102]  N. V. Gulick Theoretical aspects of the linked ring problem , 1993 .

[103]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[104]  Jean-Pierre Sauvage,et al.  Interlacing molecular threads on transition metals: catenands, catenates, and knots , 1990 .

[105]  Jillian M Buriak,et al.  Organometallic chemistry on silicon and germanium surfaces. , 2002, Chemical reviews.

[106]  John Ross,et al.  Implementation of logic functions and computations by chemical kinetics , 1995 .

[107]  L. L. Vadasz,et al.  Silicon-gate technology , 1969, IEEE Spectrum.

[108]  G. Fagas,et al.  Tunnelling in alkanes anchored to gold electrodes via amine end groups , 2007, Nanotechnology.

[109]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[110]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[111]  Marco Camalleri,et al.  Strategies for nanoelectronics , 2005 .

[112]  W. H. Jeu,et al.  Highly Stable Si−C Linked Functionalized Monolayers on the Silicon (100) Surface , 1998 .

[113]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[114]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[115]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[116]  T.C. Holloway,et al.  A new edge-defined approach for submicrometer MOSFET fabrication , 1981, IEEE Electron Device Letters.

[117]  Anirban Bandyopadhyay,et al.  Key to design functional organic molecules for binary operation with large conductance switching , 2003 .

[118]  Mark A. Reed,et al.  Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer , 2004 .

[119]  R. Hamers,et al.  The role of Pi-conjugation in attachment of organic molecules to the silicon (001) surface , 2002 .

[120]  G. Cerofolini,et al.  Gettering mechanisms in silicon , 1988 .

[121]  P. Ward,et al.  The early oxynitridation stages of hydrogen-terminated (100) silicon after exposure to N2 : N2O. IV: Oxide structure and growth kinetics in the monolayer regime , 2005 .

[122]  A. Ulman,et al.  Self‐assembled monolayers of alkyltrichiorosilanes: Building blocks for future organic materials , 1990 .

[123]  A. Bandyopadhyay,et al.  Electrical bistability in molecular films: transition from memory to threshold switching , 2004 .

[124]  G. Cerofolini A Model for the Non‐Equilibrium, Pure‐Generation Centre in Silicon , 1987 .

[125]  N. Thomas,et al.  The physics of biological molecular motors , 1998 .

[126]  S. Patole,et al.  A kinetic model of the formation of organic monolayers on hydrogen-terminated silicon by hydrosilation of alkenes. , 2005, The journal of physical chemistry. B.

[127]  Anirban Bandyopadhyay,et al.  Memory-switching phenomenon in acceptor-rich organic molecules: impedance spectroscopic studies. , 2005, The journal of physical chemistry. B.

[128]  Yi Luo,et al.  The molecule-electrode interface in single-molecule transistors. , 2003, Angewandte Chemie.