Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis

[1]  Yi Lu,et al.  Application of Machine Learning Approaches for the Design and Study of Anticancer Drugs. , 2019, Current drug targets.

[2]  Senén Barro,et al.  An extensive experimental survey of regression methods , 2019, Neural Networks.

[3]  M. Li,et al.  Long non-coding RNA MALAT1 regulates ovarian cancer cell proliferation, migration and apoptosis through Wnt/β-catenin signaling pathway. , 2018, European review for medical and pharmacological sciences.

[4]  Paulo Mazzoncini de Azevedo Marques,et al.  Radiomics-based features for pattern recognition of lung cancer histopathology and metastases , 2018, Comput. Methods Programs Biomed..

[5]  Shu-Ju Tu,et al.  Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening , 2018, Physics in medicine and biology.

[6]  Xiao Liang,et al.  Novel radiomic signature as a prognostic biomarker for locally advanced rectal cancer , 2018, Journal of magnetic resonance imaging : JMRI.

[7]  Hidetaka Arimura,et al.  Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. , 2018, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[8]  Roy S. Herbst,et al.  The biology and management of non-small cell lung cancer , 2018, Nature.

[9]  Boris Sepesi,et al.  Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer. , 2017, International journal of radiation oncology, biology, physics.

[10]  Prateek Prasanna,et al.  Radiomics and radiogenomics in lung cancer: A review for the clinician. , 2018, Lung cancer.

[11]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[12]  Jin Mo Goo,et al.  The prognostic value of CT radiomic features for patients with pulmonary adenocarcinoma treated with EGFR tyrosine kinase inhibitors , 2017, PloS one.

[13]  Bin Zhang,et al.  Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. , 2017, Cancer letters.

[14]  Kujtim Latifi,et al.  Imaging features from pretreatment CT scans are associated with clinical outcomes in nonsmall‐cell lung cancer patients treated with stereotactic body radiotherapy , 2017, Medical physics.

[15]  Carsten Brink,et al.  Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. , 2017, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[16]  Liu Yang,et al.  Evidence, Mechanism, and Clinical Relevance of the Transdifferentiation from Lung Adenocarcinoma to Squamous Cell Carcinoma. , 2017, The American journal of pathology.

[17]  Peter Balter,et al.  Delta-radiomics features for the prediction of patient outcomes in non–small cell lung cancer , 2017, Scientific Reports.

[18]  Jae Kwon Kim,et al.  A Performance Comparison on the Machine Learning Classifiers in Predictive Pathology Staging of Prostate Cancer , 2017, MedInfo.

[19]  Kyung Soo Lee,et al.  Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma , 2016, Oncotarget.

[20]  João Manuel R. S. Tavares,et al.  Automatic 3D pulmonary nodule detection in CT images: A survey , 2016, Comput. Methods Programs Biomed..

[21]  P. Lambin,et al.  CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. , 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  Cheng-Yi Cheng,et al.  Predictive Value of 18F-FDG PET and CT Morphologic Features for Recurrence in Pathological Stage IA Non-Small Cell Lung Cancer , 2015, Medicine.

[23]  Vicenta S Martínez-Zorzano,et al.  Erythrocyte fatty acids as potential biomarkers in the diagnosis of advanced lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung cancer. , 2014, American journal of clinical pathology.

[24]  Roberto Maroldi,et al.  Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy , 2013, European Radiology.

[25]  P. Lambin,et al.  Predicting outcomes in radiation oncology—multifactorial decision support systems , 2013, Nature Reviews Clinical Oncology.

[26]  Morihito Okada,et al.  Prediction of pathologic node-negative clinical stage IA lung adenocarcinoma for optimal candidates undergoing sublobar resection. , 2012, The Journal of thoracic and cardiovascular surgery.

[27]  F. Göke,et al.  Translationale Forschung und Diagnostik beim Lungenkarzinom , 2012, Der Pathologe.

[28]  Patrick Granton,et al.  Radiomics: extracting more information from medical images using advanced feature analysis. , 2012, European journal of cancer.

[29]  S. Perner,et al.  [Translational research and diagnostics in lung cancer]. , 2012, Der Pathologe.

[30]  Fumihiro Tanaka,et al.  The prognostic significance of HER2 overexpression in non-small cell lung cancer. , 2011, Anticancer research.

[31]  F. González-Aragoneses,et al.  Multicenter Analysis of Survival and Prognostic Factors in Pathologic Stage I Non-Small-Cell Lung Cancer According to the New 2009 TNM Classification , 2011 .

[32]  Pablo León-Atance,et al.  Análisis multicéntrico de supervivencia y factores pronósticos en el carcinoma no microcítico de pulmón en estadio I patológico según la nueva clasificación TNM de 2009 , 2011 .

[33]  Yoichi Kameda,et al.  Sublobar resection for patients with peripheral small adenocarcinomas of the lung: surgical outcome is associated with features on computed tomographic imaging. , 2007, The Annals of thoracic surgery.

[34]  Takashi Nakajima,et al.  Fluorine-18-α-Methyltyrosine Positron Emission Tomography for Diagnosis and Staging of Lung Cancer: A Clinicopathologic Study , 2007, Clinical Cancer Research.

[35]  Byung-Tae Kim,et al.  Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. , 2005, Radiology.

[36]  D. Libby,et al.  Tumor size predicts survival within stage IA non-small cell lung cancer. , 2003, Chest.

[37]  Paul J. Perry,et al.  A Review for the Clinician , 2002 .