Solving, Reasoning, and Programming in Common Logic

Common Logic (CL) is a recent ISO standard for exchanging logic-based information between disparate computer systems. Sharing and reasoning upon knowledge represented in CL require equation solving over terms of this language. We study computationally well-behaved fragments of such solving problems and show how they can influence reasoning in CL and transformations of CL expressions.

[1]  Pierre-Etienne Moreau,et al.  Tom: Piggybacking Rewriting on Java , 2007, RTA.

[2]  Jan Maluszynski,et al.  AND-Parallelism with Intelligent Backtracking for Annotated Logic Programs , 1985, SLP.

[3]  Claude Kirchner,et al.  The rewriting calculus - Part I , 2001, Log. J. IGPL.

[4]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[5]  Phokion G. Kolaitis,et al.  The Complexity of Counting Problems in Equational Matching , 1994, J. Symb. Comput..

[6]  Temur Kutsia,et al.  Equational Prover of THEOREMA , 2003, RTA.

[7]  Daniel H. Younger,et al.  Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..

[8]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[9]  Temur Kutsia,et al.  Solving equations with sequence variables and sequence functions , 2007, J. Symb. Comput..

[10]  Christopher Menzel Knowledge representation, the World Wide Web, and the evolution of logic , 2009, Synthese.

[11]  Temur Kutsia,et al.  Unification with Sequence Variables and Flexible Arity Symbols and Its Extension with Pattern-Terms , 2002, AISC.

[12]  Jürgen Stuber,et al.  The Complexity of Linear and Stratified Context Matching Problems , 2004, Theory of Computing Systems.

[13]  Jordi Levy,et al.  On the relation between Context and Sequence Unification , 2010, J. Symb. Comput..

[14]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[15]  Michael Kifer,et al.  HILOG: A Foundation for Higher-Order Logic Programming , 1993, J. Log. Program..

[16]  Adam Pease,et al.  Sigma: An integrated development environment for formal ontology , 2013, AI Commun..

[17]  Temur Kutsia,et al.  Theorem Proving with Sequence Variables and Flexible Arity Symbols , 2002, LPAR.

[18]  M. R. Genesereth,et al.  Knowledge Interchange Format Version 3.0 Reference Manual , 1992, LICS 1992.

[19]  Christopher Lynch,et al.  Oriented Equational Logic Programming is Complete , 1995, J. Symb. Comput..

[20]  Ian Horrocks,et al.  Reasoning Support for Expressive Ontology Languages Using a Theorem Prover , 2006, FoIKS.

[21]  Wojciech Plandowski Satisfiability of word equations with constants is in PSPACE , 2004, JACM.

[22]  Temur Kutsia,et al.  Foundations of the rule-based system ρLog , 2006, J. Appl. Non Class. Logics.

[23]  J. A. Robinson,et al.  Handbook of Automated Reasoning (in 2 volumes) , 2001 .

[24]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[25]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[26]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[27]  Michael R. Genesereth,et al.  Knowledge Interchange Format , 1991, KR.