Convolutionally Coded Hopping Pattern for MFSK Modulation in Underwater Acoustic Communication

A convolutionally coded <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula>-ary frequency shift keying (MFSK) modulation scheme for underwater acoustic communication is introduced. It uses a rate <inline-formula> <tex-math notation="LaTeX">$1/\log _{2}{M}$ </tex-math></inline-formula> inner convolutional code, whose coded symbols are used as transmission symbols. An interleaver in the frequency domain is applied to improve the average channel clearing time. It thereby achieves almost the same data rate as a comparable uncoded frequency hopped frequency shift keying (FH-FSK) modulation scheme, but obtains the error correcting properties of the convolutional code. Bit and packet error rates are evaluated on the additive white Gaussian noise (AWGN) channel and the so-called Watermark channel model, which is a benchmark for underwater acoustic modulation schemes based on sea trial measurements. The JANUS standard which uses convolutionally coded FH-FSK is used for comparison. On the AWGN channel, the proposed scheme achieves a gain of 4 dB with respect to the required <inline-formula> <tex-math notation="LaTeX">$E_{b}/N_{0}$ </tex-math></inline-formula> for a given packet error rate (PER) compared with JANUS. In the Watermark scenarios, the best proposed-scheme achieves a PER < <inline-formula> <tex-math notation="LaTeX">$10^{-3}$ </tex-math></inline-formula> at more than 10 dB lower <inline-formula> <tex-math notation="LaTeX">$E_{b}/N_{0}$ </tex-math></inline-formula> than the JANUS implementation.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[3]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[4]  Sabah Badri-Hoeher,et al.  Bitwise ranging through underwater acoustic communication with frequency hopped FSK utilizing the Goertzel algorithm , 2017, OCEANS 2017 - Aberdeen.

[5]  Ivor Nissen,et al.  The JANUS underwater communications standard , 2014, 2014 Underwater Communications and Networking (UComms).

[6]  Paul A. van Walree,et al.  The Watermark Benchmark for Underwater Acoustic Modulation Schemes , 2017, IEEE Journal of Oceanic Engineering.

[7]  Sumit Roy,et al.  Rate-range for an FH-FSK acoustic modem , 2007, Underwater Networks.

[8]  E. Jacobsen,et al.  The sliding DFT , 2003, IEEE Signal Process. Mag..

[9]  Shengli Zhou,et al.  Prospects and Problems of Wireless Communication for Underwater Sensor , 2008 .

[10]  Paul A. van Walree,et al.  Underwater Acoustic Network Simulation With Lookup Tables From Physical-Layer Replay , 2015, IEEE Journal of Oceanic Engineering.

[11]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[12]  Milica Stojanovic,et al.  Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges , 2008 .

[13]  Rolf Johannesson,et al.  New rate 1/2, 1/3, and 1/4 binary convolutional encoders with an optimum distance profile , 1999, IEEE Trans. Inf. Theory.

[14]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.