A small molecule p53 activator attenuates Fanconi anemia leukemic stem cell proliferation

[1]  A. Shimamura,et al.  Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. , 2017, Blood reviews.

[2]  E. Bruford,et al.  Update of the human and mouse Fanconi anemia genes , 2015, Human Genomics.

[3]  J. Surrallés,et al.  Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. , 2015, Current opinion in genetics & development.

[4]  S. Meyer,et al.  Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults , 2015, Clinical genetics.

[5]  W. Hauswirth,et al.  Retinal angiogenesis suppression through small molecule activation of p53. , 2013, The Journal of clinical investigation.

[6]  A. S. Ye,et al.  Suppression of host p53 is critical for Plasmodium liver-stage infection. , 2013, Cell reports.

[7]  Molly C. Kottemann,et al.  Fanconi anaemia and the repair of Watson and Crick DNA crosslinks , 2013, Nature.

[8]  J. Wagner,et al.  Current clinical management of Fanconi anemia , 2012, Expert review of hematology.

[9]  J. Soulier,et al.  Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. , 2012, Cell stem cell.

[10]  Stephen C. West,et al.  DNA interstrand crosslink repair and cancer , 2011, Nature Reviews Cancer.

[11]  P. Secchiero,et al.  Recent advances in the therapeutic perspectives of Nutlin-3. , 2011, Current pharmaceutical design.

[12]  J. Soulier,et al.  Spontaneous abrogation of the G₂DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. , 2011, The Journal of clinical investigation.

[13]  M. Carroll,et al.  AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3 , 2010, Leukemia.

[14]  F. Locatelli,et al.  Bone marrow transplantation for inherited bone marrow failure syndromes. , 2010, Pediatric clinics of North America.

[15]  Shuo Lin,et al.  Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. , 2008, Blood.

[16]  Xiaoling Zhang,et al.  Oxidative stress in Fanconi anemia hematopoiesis and disease progression. , 2008, Antioxidants & redox signaling.

[17]  Christopher Y. Park,et al.  Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects , 2008, Nature Genetics.

[18]  M. Cazzola,et al.  Haploinsufficiency of RPS14 in 5q− syndrome is associated with deregulation of ribosomal- and translation-related genes , 2008, British journal of haematology.

[19]  T. Golub,et al.  Identification of RPS14 as a 5q- syndrome gene by RNA interference screen , 2007, Nature.

[20]  H. Mayani,et al.  Hematopoietic changes during progression from Fanconi anemia into acute myeloid leukemia: Case report and brief review of the literature , 2006, Hematology.

[21]  C. Sieff,et al.  Recent insights into the pathogenesis of Diamond–Blackfan anaemia , 2006, British journal of haematology.

[22]  A. D’Andrea,et al.  The Fanconi Anemia/BRCA pathway: new faces in the crowd. , 2005, Genes & development.

[23]  M. Grompe,et al.  Heterozygosity for p53 (Trp53+/-) accelerates epithelial tumor formation in fanconi anemia complementation group D2 (Fancd2) knockout mice. , 2005, Cancer research.

[24]  Christie M. Orschell,et al.  A Role for the Fanconi Anemia C Protein in Maintaining the DNA Damage-induced G2 Checkpoint* , 2004, Journal of Biological Chemistry.

[25]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[26]  A. Look,et al.  Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. , 2003, Developmental cell.

[27]  Alan D. D'Andrea Fanconi anemia , 2003, Current Biology.

[28]  Marianne Berwick,et al.  A 20-year perspective on the International Fanconi Anemia Registry (IFAR). , 2003, Blood.

[29]  G. Bagby Genetic basis of Fanconi anemia , 2003, Current opinion in hematology.

[30]  M. Buchwald,et al.  Loss of FancC Function Results in Decreased Hematopoietic Stem Cell Repopulating Ability , 1999, Blood.

[31]  David A. Williams,et al.  Stem cell collection and gene transfer in Fanconi anemia. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  R. G. Allen,et al.  Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. , 1991, Cancer genetics and cytogenetics.