A Remark on Transversal Numbers

In his classical monograph published in 1935, Denes Konig [K] included one of Paul Erdos’s first remarkable results: an infinite version of the Menger theorem. This result (as well as the Konig-Hall theorem for bipartite graphs, and many related results covered in the book) can be reformulated as a statement about transversals of certain hypergraphs.Let H be a hypergraph with vertex set V(H) and edge set E(H). A subset T C V(H) is called a transversal of H if it meets every edge E E E(H). The transversal number, r(iJ), is defined as the minimum cardinality of a transversal of H. Clearly, r(H) > v(H), where v(H) denotes the maximum number of pairwise disjoint edges of H. In the above mentioned examples, r(H) = v(H) holds for the corresponding hypergraphs. However, in general it is impossible to bound r from above by any function of u, without putting some restriction on the structure of H.

[1]  P. ERDijS,et al.  ON THE DISTRIBUTION OF VALUES OF ANGLES DETERMINED BY COPLANAR POINTS , 1979 .

[2]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[3]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[4]  Imre Bárány,et al.  Covering with Euclidean Boxes , 1987, Eur. J. Comb..

[5]  Tomasz Luczak,et al.  Coloring dense graphs via VC-dimension , 2010, 1007.1670.

[6]  János Pach,et al.  Combinatorial Geometry , 2012 .

[7]  Jenö Lehel Gallai-type Results for Multiple Boxes and Forests , 1988, Eur. J. Comb..

[8]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Noga Alon,et al.  Dominating sets in k-majority tournaments , 2006, J. Comb. Theory, Ser. B.

[10]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[11]  Imre Bárány An extension of the Erdős-Szekeres theorem on large angles , 1987, Comb..

[12]  P. Erdös,et al.  The Greatest Angle Among n Points in the d- Dimensional Euclidean Space , 1983 .

[13]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[14]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[15]  A. Gyárfás A Ramsey-type theorem and its application to relatives of Helly's theorem , 1973 .

[16]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[17]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[18]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[19]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[20]  Noga Alon,et al.  Transversal numbers for hypergraphs arising in geometry , 2002, Adv. Appl. Math..

[21]  R. Pollack,et al.  Geometric Transversal Theory , 1993 .

[22]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[23]  Paul Seymour,et al.  Bounding the vertex cover number of a hypergraph , 1994, Comb..