Morphometric studies of the genus Sitobion Mordvilko 1914 in Australia (Hemiptera: Aphididae)

The taxonomic status of several Australian populations within the aphid genus Sitobion has been uncertain for many years. Morphometric investigations using principal component analysis and canonical discriminant analysis have allowed us to clarify the relationships of these entities. A form on grasses, referred to in the literature as Sitobion near fragariae, is shown not to separate morphometrically from S. fragariae (Walker) collected in Europe and North America. In contrast, Sitobion miscanthi (Takahashi) Clones 61 (2n = 20) and 34 (2n = 17) separate unequivocally from each other and from Clone 4 (2n = 18), the supposed ancestral karyotype. We argue against describing these as separate species. Sexual forms of S. miscanthi and Australian S. fragariae reared in the laboratory were compared with the sexual forms of European Sitobion avenae (Fabricius) and S. fragariae, respectively. Australian specimens from Smilax glyciphylla and Smilax australis (Smilacaceae) are not Sitobion smilacifoliae (Takahashi).

[1]  Zuorui Shen,et al.  Seasonal genetic structure in Beijing populations of the grain aphid Sitobion miscanthi (Takahashi): an investigation using microsatellites , 2008 .

[2]  B. Tabachnick,et al.  Using multivariate statistics, 5th ed. , 2007 .

[3]  A. Wilson,et al.  The genetic outcomes of sex and recombination in long-term functionally parthenogenetic lineages of Australian Sitobion aphids. , 2006, Genetical research.

[4]  S. Lee,et al.  Morphological and genetic indiscrimination of the grain aphids, Sitobion avenae complex (Hemiptera: Aphididae) , 2006 .

[5]  D. G. Bedo,et al.  Microsatellites reveal male recombination and neo-sex chromosome formation in Scaptodrosophila hibisci (Drosophilidae). , 2006, Genetical research.

[6]  R. Blackman,et al.  Behaviour of the X chromosomes during growth and maturation of parthenogenetic eggs of Amphorophora tuberculata (Homoptera, Aphididae), in relation to sex determination , 1986, Chromosoma.

[7]  A. Wilson,et al.  Heritable genetic variation and potential for adaptive evolution in asexual aphids (Aphidoidea) , 2003 .

[8]  R. Blackman,et al.  Morphometric correlates of karyotype and host plant in genus Euceraphis (Hemiptera: Aphididae) , 2002 .

[9]  A. Wilson,et al.  SSCP is not so difficult: the application and utility of single‐stranded conformation polymorphism in evolutionary biology and molecular ecology , 2000, Molecular ecology.

[10]  A. Wilson,et al.  Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand , 1999, Molecular ecology.

[11]  P. Sunnucks,et al.  Evolution of an ecological trait in parthenogenetic Sitobion aphids , 1998, Heredity.

[12]  P. Sunnucks,et al.  Different responses to temperature in three closely-related sympatric cereal aphids , 1998 .

[13]  A. Dixon,et al.  Sitobion in the South Seas - microsatellite revelations. , 1998 .

[14]  P. Sunnucks,et al.  Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization , 1997, Molecular ecology.

[15]  P. England,et al.  Microsatellite and chromosome evolution of parthenogenetic sitobion aphids in Australia. , 1996, Genetics.

[16]  P. Sunnucks,et al.  Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). , 1996, Molecular biology and evolution.

[17]  R. Blackman,et al.  The identity of the African pine woolly aphid: a multidisciplinary approach. , 1995 .

[18]  R. Blackman,et al.  Morphometric variation within and between populations of Rhopalosiphum maidis with a discussion of the taxonomic treatment of permanently parthenogenetic aphids (Homoptera: Aphididae). , 1991 .

[19]  E. Turak,et al.  APHIDS OF THE GENUS SITOBION OCCURRING ON GRASSES IN SOUTHERN AUSTRALIA , 1990 .

[20]  A. K. Minks,et al.  Aphids: Their Biology, Natural Enemies and Control , 1987 .

[21]  A. Paterson,et al.  Separation of Myzus (Nectarosiphon) antirrhinii (Macchiati) from Myzus (N.) persicae (Sulzer) and related species in Europe (Homoptera: Aphididae) , 1986 .

[22]  J. Hardie,et al.  Juvenile hormone effects on polymorphism in the pea aphid, A cyrthosiphon pisum , 1985 .

[23]  A. D. Lees,et al.  The induction of normal and teratoid viviparae by a juvenile hormone and kinoprene in two species of aphids , 1985 .

[24]  R. L. Blackman,et al.  Aphids on the World's Crops: An Identification and Information Guide , 1984 .

[25]  B. Tabachnick,et al.  Using Multivariate Statistics , 1983 .

[26]  J. Searle,et al.  Embryogenesis and oögenesis in alate virginoparae, gynoparae, and oviparae of the aphid Myzus persicae, in relation to photoperiod , 1982 .

[27]  D. Raychaudhuri Aphids of North-East India and Bhutan , 1980 .

[28]  R. Blackman,et al.  Morphological and cytological separation of Amphorophora Buckton (Homoptera: Aphididae) feeding on European raspberry and blackberry ( Rubus spp.) , 1977 .

[29]  S. K. David A taxonomic review of Macrosiphum (Homoptera : Aphiddiae) in India , 1975 .

[30]  A. Ghosh,et al.  Studies on the aphids (Homoptera : Aphididae) from eastern India: XI. Descriptions of hitherto unknown or newly recorded sexual morphs of some species from West Bengal , 1972 .

[31]  D. Chaudhuri,et al.  A Preliminary Account of the Bionomics and Taxonomy of Aphids from Assam , 1962 .

[32]  Floriano Papi,et al.  Monitore Zoologico Italiano , 1952 .

[33]  台湾総督府中央研究所,et al.  Aphididae of Formosa , 1923 .