Polarons in a Cylindrical Quantum Wire with Finite-Barrier Well

The eigenfunctions and eigenenergies of an electron in a finite-barrier cylindrical quantum wire are obtained. The case of different electron band masses in the cylinder and the barrier material is discussed. The polaron binding energy and the polaron effective mass due to the interaction of an electron with two cylindrical-interface optical modes as well as with cylindrical bulk-in and cylindrical bulk-out confined LO-phonon modes are calculated, and their dependence on the radius of the cylinder is studied in detail. The comparison with the results for a 2D polaron is performed. Es werden die Eigenfrequenzen und Eigenenergien eines Elektrons in einem zylindrischen Quantendraht mit einer Barriere endlicher Hohe gefunden, wobei sich die Elektronenbandmassen im Zylinder und in der Barriere voneinander unterscheiden. Die Bindungsenergie und die effektive Masse der Polaronen, die aus der Wechselwirkung des Elektrons mit zwei Moden der optischen Zylinder-Oberflachen-phononen wie auch mit inneren und auseren Zylinder-Volumenmoden der LO-Phononen folgen, werden berechnet, und ihre Abhangigkeit vom Radius des Zylinders wird detailliert untersucht. Es wird ein Vergleich mit den Ergebnissen fur 2D-Polaronen durchgefuhrt.

[1]  Zhou Energy levels of a magnetopolaron bound to a Coulomb impurity in quantum-well wires. , 1994, Physical Review B (Condensed Matter).

[2]  L. Wendler,et al.  Energy-momentum relation for polarons in quantum-well wires , 1994 .

[3]  L. Wendler,et al.  Effects of the Electron-Phonon Interaction on the Cyclotron Resonance of Parabolic Quantum Wells in a Tilted Magnetic Field , 1994 .

[4]  V. Fomin,et al.  Bulk and Interface Polarons in Quantum Wires and Dots , 1994 .

[5]  Smith,et al.  Calculation of the ground-state energies in intermixed GaAs/AlxGa1-xAs cylindrical quantum dots. , 1994, Physical Review B (Condensed Matter).

[6]  L. Wendler,et al.  Magnetopolarons in quantum dots: comparison of polaronic effects from three to quasi-zero dimensions , 1993 .

[7]  Peeters,et al.  Electron optical-phonon coupling in GaAs/AlxGa1-xAs quantum wells due to interface, slab, and half-space modes. , 1993, Physical review. B, Condensed matter.

[8]  K. Zhu,et al.  Temperature dependence of polarons in a harmonic quantum dot , 1992 .

[9]  W. S. Li,et al.  Electron-confined phonon interaction in a quantum wire with parabolic potential , 1992 .

[10]  V. Velasco,et al.  Theory of Single and Multiple Interfaces: The Method of Surface Green Function Matching , 1992 .

[11]  K. Zhu,et al.  The polaron self-energy due to phonon confinement in quantum boxes and wires , 1992 .

[12]  J. Devreese,et al.  Magneto-Optical Spectrum of a Quantum Dot , 1992 .

[13]  T. George,et al.  POLARON GROUND STATE IN A DOUBLE HETEROSTRUCTURE OF POLAR CRYSTALS , 1991 .

[14]  Peeters,et al.  Polaron energy and effective mass in a quantum well. , 1990, Physical review. B, Condensed matter.

[15]  Stroscio Interaction between longitudinal-optical-phonon modes of a rectangular quantum wire and charge carriers of a one-dimensional electron gas. , 1989, Physical review. B, Condensed matter.

[16]  Riera,et al.  LO-phonon confinement and polaron effect in a quantum well. , 1989, Physical review. B, Condensed matter.

[17]  J. Devreese,et al.  Polarons in 2D-Systems Subjected to a Magnetic Field , 1989 .

[18]  M. Cardona Folded, confined, interface, surface, and slab vibrational modes in semiconductor superlattices , 1989 .

[19]  M. H. Degani,et al.  Competition between interface and bulk phonons in GaAs/AlAs and InAs/GaSb quantum wells , 1989 .

[20]  Degani,et al.  Electron-phonon interaction effects in a quasi-two-dimensional electron gas in the GaAs-Ga1-xAlxAs heterostructure. , 1987, Physical Review B (Condensed Matter).

[21]  M. Klein Phonons in semiconductor superlattices , 1986 .

[22]  J. J. Licari Polaron self-energy in a dielectric slab☆ , 1979 .

[23]  R. Englman,et al.  Optical phonons of small crystals , 1970 .

[24]  K. L. Kliewer,et al.  Optical Modes of Vibration in an Ionic Crystal Slab , 1965 .