Chasing the “Killer” Phonon Mode for the Rational Design of Low‐Disorder, High‐Mobility Molecular Semiconductors

Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron–phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high‐mobility molecular semiconductors, state‐of‐the‐art quantum mechanical simulations of the vibrational modes and the ensuing electron–phonon coupling constants are combined with experimental measurements of the low‐frequency vibrations using inelastic neutron scattering and terahertz time‐domain spectroscopy. In this way, the long‐axis sliding motion is identified as a “killer” phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high‐mobility molecular semiconductors is suggested.

[1]  P. Chan,et al.  Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents , 2019, ACS Applied Electronic Materials.

[2]  Alan K. Thomas,et al.  Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors , 2019, Materials Horizons.

[3]  S. Parker,et al.  AbINS: The modern software for INS interpretation , 2018, Physica B: Condensed Matter.

[4]  T. Korter,et al.  Mapping the polymorphic transformation gateway vibration in crystalline 1,2,4,5-tetrabromobenzene† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03897j , 2018, Chemical science.

[5]  T. Korter,et al.  Revisiting the Thermodynamic Stability of Indomethacin Polymorphs with Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations , 2018, Crystal Growth & Design.

[6]  E. Heilweil,et al.  Optical Properties of Meloxicam in the Far-Infrared Spectral Region. , 2018, Chemical physics.

[7]  E. Venuti,et al.  Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions. , 2018, Journal of chemical theory and computation.

[8]  Bartolomeo Civalleri,et al.  Quantum‐mechanical condensed matter simulations with CRYSTAL , 2018 .

[9]  G. Škoro,et al.  The neutron guide upgrade of the TOSCA spectrometer , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[10]  Wei Zhang,et al.  Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids. , 2018, Physical review letters.

[11]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[12]  J. Brédas,et al.  Impact of Phonon Dispersion on Nonlocal Electron–Phonon Couplings in Organic Semiconductors: The Naphthalene Crystal as a Case Study , 2018 .

[13]  Luis A. Agapito,et al.  Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal , 2017, 1712.00490.

[14]  P. Heremans,et al.  Highly Crystalline C8‐BTBT Thin‐Film Transistors by Lateral Homo‐Epitaxial Growth on Printed Templates , 2017, Advanced materials.

[15]  G. Fève,et al.  Shaping charge excitations in chiral edge states with a time-dependent gate voltage , 2017, 1711.00119.

[16]  A. Troisi,et al.  A map of high-mobility molecular semiconductors. , 2017, Nature materials.

[17]  Y. Nakayama,et al.  Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors , 2017, Nature Communications.

[18]  E. Venuti,et al.  DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting , 2017, The journal of physical chemistry letters.

[19]  J. Zeitler,et al.  Intermolecular anharmonicity in molecular crystals: interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine. , 2017, Chemical communications.

[20]  C. Teichert,et al.  Reversibility of temperature driven discrete layer-by-layer formation of dioctyl-benzothieno-benzothiophene films. , 2017, Soft matter.

[21]  H. Sirringhaus,et al.  High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. , 2017, Nature materials.

[22]  Toshihiro Okamoto,et al.  Suppressing molecular vibrations in organic semiconductors by inducing strain , 2016, Nature Communications.

[23]  N. Kobayashi,et al.  The emergence of charge coherence in soft molecular organic semiconductors via the suppression of thermal fluctuations , 2016 .

[24]  H. Sirringhaus,et al.  Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions , 2016, Nature Communications.

[25]  K. Müllen,et al.  Mobility Exceeding 10 cm2/(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport , 2016 .

[26]  S. Ciuchi,et al.  The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials , 2015, 1505.02686.

[27]  S. Mannsfeld,et al.  Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: synthesis, characterization and electronic properties , 2015 .

[28]  Felix Fernandez-Alonso,et al.  Recent and future developments on TOSCA at ISIS , 2014 .

[29]  A. Yamano,et al.  High‐Performance Solution‐Processable N‐Shaped Organic Semiconducting Materials with Stabilized Crystal Phase , 2014, Advanced materials.

[30]  G. Schweicher,et al.  What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors , 2014 .

[31]  H. Sirringhaus 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon , 2014, Advanced materials.

[32]  H. Sirringhaus,et al.  Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. , 2013, Nature materials.

[33]  C. Teichert,et al.  Dynamics of monolayer-island transitions in 2,7-dioctyl-benzothienobenzthiophene thin films. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  W. Xie,et al.  Temperature‐Independent Transport in High‐Mobility Dinaphtho‐Thieno‐Thiophene (DNTT) Single Crystal Transistors , 2013, Advanced materials.

[35]  P. Paul Ruden,et al.  High-Mobility Transistors Based on Single Crystals of Isotopically Substituted Rubrene-d28 , 2013 .

[36]  J. Brédas,et al.  Nonlocal electron-phonon coupling in the pentacene crystal: beyond the Γ-point approximation. , 2012, The Journal of chemical physics.

[37]  S. Ciuchi,et al.  Electronic transport and quantum localization effects in organic semiconductors , 2012, 1210.1673.

[38]  V. Stojanović,et al.  Electron-phonon coupling in crystalline organic semiconductors: microscopic evidence for nonpolaronic charge carriers. , 2012, Physical review letters.

[39]  J. Takeya,et al.  Temperature dependence of the Hall effect in pentacene field-effect transistors: Possibility of charge decoherence induced by molecular fluctuations , 2012 .

[40]  S. Ciuchi,et al.  Molecular fingerprints in the electronic properties of crystalline organic semiconductors: from experiment to theory. , 2011, Physical review letters.

[41]  Alessandro Troisi,et al.  Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. , 2011, Physical review letters.

[42]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[43]  Masakazu Yamagishi,et al.  Patternable Solution‐Crystallized Organic Transistors with High Charge Carrier Mobility , 2011, Advanced materials.

[44]  Hiroki Mori,et al.  Alkylated Dinaphtho[2,3‐b:2′,3′‐f]Thieno[3,2‐b]Thiophenes (Cn‐DNTTs): Organic Semiconductors for High‐Performance Thin‐Film Transistors , 2011, Advanced materials.

[45]  I. Osaka,et al.  One-step synthesis of [1]benzothieno[3,2-b][1]benzothiophene from o-chlorobenzaldehyde , 2011 .

[46]  J. Brédas,et al.  Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. , 2010, Journal of the American Chemical Society.

[47]  E. Venuti,et al.  Peierls and Holstein carrier-phonon coupling in crystalline rubrene , 2010 .

[48]  K. Takimiya,et al.  Unique three-dimensional (3D) molecular array in dimethyl-DNTT crystals: a new approach to 3D organic semiconductors , 2010 .

[49]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[50]  Yutaka Ito,et al.  Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. , 2009, Journal of the American Chemical Society.

[51]  William I. F. David,et al.  ExtSym: a program to aid space‐group determination from powder diffraction data , 2008 .

[52]  E. Venuti,et al.  Probing polymorphs of organic semiconductors by lattice phonon Raman microscopy , 2008 .

[53]  Kazuo Takimiya,et al.  Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. , 2007, Journal of the American Chemical Society.

[54]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[55]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[56]  Jason C. Cole,et al.  DASH: a program for crystal structure determination from powder diffraction data , 2006 .

[57]  Clifford L. Henderson,et al.  A top surface imaging method using area selective ALD on chemically amplified polymer photoresist films , 2006 .

[58]  Edward F. Valeev,et al.  Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. , 2006, Journal of the American Chemical Society.

[59]  T. Palstra,et al.  Low-temperature structure of rubrene single crystals grown by vapor transport. , 2006, Acta crystallographica. Section B, Structural science.

[60]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[61]  Alessandro Troisi,et al.  Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. , 2005, The journal of physical chemistry. A.

[62]  E. Venuti,et al.  Characterization of Phase Purity in Organic Semiconductors by Lattice‐Phonon Confocal Raman Mapping: Application to Pentacene , 2005 .

[63]  Jean-Luc Brédas,et al.  Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy , 2005 .

[64]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[65]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[66]  J. Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[67]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[68]  J. Vidal,et al.  Quantum dynamics in two- and three-dimensional quasiperiodic tilings , 2001, cond-mat/0111577.

[69]  K. Peter C. Vollhardt,et al.  On the Nature of Nonplanarity in the [N]Phenylenes , 1999 .

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  R. Bushby,et al.  Mechanism of charge transport in discotic liquid crystals. , 1995, Physical review. B, Condensed matter.

[72]  G. Pawley,et al.  Phonon dispersion in d8-naphthalene crystal at 6K , 1980 .

[73]  Henning Sirringhaus,et al.  Critical assessment of charge mobility extraction in FETs. , 2017, Nature materials.

[74]  Felix Fernandez-Alonso,et al.  Monte carlo simulations of the TOSCA spectrometer: Assessment of current performance and future upgrades , 2015 .

[75]  Frank Neese,et al.  The ORCA program system , 2012 .

[76]  T. Haino,et al.  One-Step Synthesis , 2010 .

[77]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .