Unifying flavors of fault tolerance with the ZX calculus
暂无分享,去创建一个
[1] Naomi H. Nickerson,et al. Modular decoding: parallelizable real-time decoding for quantum computers , 2023, 2303.04846.
[2] D. Bacon,et al. Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics , 2023, 2302.02192.
[3] P. Shor,et al. Graphical quantum Clifford-encoder compilers from the ZX calculus , 2023, 2301.02356.
[4] M. Hastings,et al. Performance of Planar Floquet Codes with Majorana-Based Qubits , 2022, PRX Quantum.
[5] Naomi H. Nickerson,et al. Logical Blocks for Fault-Tolerant Topological Quantum Computation , 2021, PRX Quantum.
[6] Naomi H. Nickerson,et al. Fusion-based quantum computation , 2021, Nature Communications.
[7] Naomi H. Nickerson,et al. Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections , 2022, 2211.15465.
[8] D. Gottesman. Opportunities and Challenges in Fault-Tolerant Quantum Computation , 2022, 2210.15844.
[9] R. Wille,et al. Equivalence Checking of Quantum Circuits With the ZX-Calculus , 2022, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.
[10] C. Gidney. A Pair Measurement Surface Code on Pentagons , 2022, 2206.12780.
[11] C. Gidney,et al. Benchmarking the Planar Honeycomb Code , 2022, Quantum.
[12] M. Hastings,et al. Boundaries for the Honeycomb Code , 2021, Quantum.
[13] M. Hastings,et al. Dynamically Generated Logical Qubits , 2021, Quantum.
[14] Isaac H. Kim,et al. Interleaving: Modular architectures for fault-tolerant photonic quantum computing , 2021, 2103.08612.
[15] J. V. D. Wetering. ZX-calculus for the working quantum computer scientist , 2020, 2012.13966.
[16] R. Aguado,et al. Majorana qubits for topological quantum computing , 2020, Physics Today.
[17] K. Brown,et al. Generating Fault-Tolerant Cluster States from Crystal Structures , 2019, Quantum.
[18] Dominic Horsman,et al. The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.
[19] Naomi H. Nickerson,et al. Measurement based fault tolerance beyond foliation , 2018, 1810.09621.
[20] Hector Bombin,et al. 2D quantum computation with 3D topological codes , 2018, 1810.09571.
[21] Quanlong Wang,et al. Two complete axiomatisations of pure-state qubit quantum computing , 2018, LICS.
[22] Simon Perdrix,et al. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.
[23] Aleks Kissinger,et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .
[24] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[25] I. Djordjevic. Quantum Low-Density Parity-Check Codes , 2012 .
[26] H. Briegel,et al. Measurement-based quantum computation , 2009, 0910.1116.
[27] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[28] H. Bombin,et al. Topological quantum distillation. , 2006, Physical review letters.
[29] R. Raussendorf,et al. A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.
[30] R. Raussendorf,et al. Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.
[31] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[32] A. Kitaev,et al. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[33] J. Preskill,et al. Topological quantum memory , 2001, quant-ph/0110143.