Unifying flavors of fault tolerance with the ZX calculus

There are several models of quantum computation which exhibit shared fundamental fault-tolerance properties. This article makes commonalities explicit by presenting these different models in a unifying framework based on the ZX calculus. We focus on models of topological fault tolerance - specifically surface codes - including circuit-based, measurement-based and fusion-based quantum computation, as well as the recently introduced model of Floquet codes. We find that all of these models can be viewed as different flavors of the same underlying stabilizer fault-tolerance structure, and sustain this through a set of local equivalence transformations which allow mapping between flavors. We anticipate that this unifying perspective will pave the way to transferring progress among the different views of stabilizer fault-tolerance and help researchers familiar with one model easily understand others.

[1]  Naomi H. Nickerson,et al.  Modular decoding: parallelizable real-time decoding for quantum computers , 2023, 2303.04846.

[2]  D. Bacon,et al.  Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics , 2023, 2302.02192.

[3]  P. Shor,et al.  Graphical quantum Clifford-encoder compilers from the ZX calculus , 2023, 2301.02356.

[4]  M. Hastings,et al.  Performance of Planar Floquet Codes with Majorana-Based Qubits , 2022, PRX Quantum.

[5]  Naomi H. Nickerson,et al.  Logical Blocks for Fault-Tolerant Topological Quantum Computation , 2021, PRX Quantum.

[6]  Naomi H. Nickerson,et al.  Fusion-based quantum computation , 2021, Nature Communications.

[7]  Naomi H. Nickerson,et al.  Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections , 2022, 2211.15465.

[8]  D. Gottesman Opportunities and Challenges in Fault-Tolerant Quantum Computation , 2022, 2210.15844.

[9]  R. Wille,et al.  Equivalence Checking of Quantum Circuits With the ZX-Calculus , 2022, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[10]  C. Gidney A Pair Measurement Surface Code on Pentagons , 2022, 2206.12780.

[11]  C. Gidney,et al.  Benchmarking the Planar Honeycomb Code , 2022, Quantum.

[12]  M. Hastings,et al.  Boundaries for the Honeycomb Code , 2021, Quantum.

[13]  M. Hastings,et al.  Dynamically Generated Logical Qubits , 2021, Quantum.

[14]  Isaac H. Kim,et al.  Interleaving: Modular architectures for fault-tolerant photonic quantum computing , 2021, 2103.08612.

[15]  J. V. D. Wetering ZX-calculus for the working quantum computer scientist , 2020, 2012.13966.

[16]  R. Aguado,et al.  Majorana qubits for topological quantum computing , 2020, Physics Today.

[17]  K. Brown,et al.  Generating Fault-Tolerant Cluster States from Crystal Structures , 2019, Quantum.

[18]  Dominic Horsman,et al.  The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.

[19]  Naomi H. Nickerson,et al.  Measurement based fault tolerance beyond foliation , 2018, 1810.09621.

[20]  Hector Bombin,et al.  2D quantum computation with 3D topological codes , 2018, 1810.09571.

[21]  Quanlong Wang,et al.  Two complete axiomatisations of pure-state qubit quantum computing , 2018, LICS.

[22]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[23]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[24]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[25]  I. Djordjevic Quantum Low-Density Parity-Check Codes , 2012 .

[26]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[27]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[28]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[29]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[30]  R. Raussendorf,et al.  Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.

[31]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[32]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[33]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.