Convoluted generalized white noise, Schwinger functions and their continuation to Wightman functions

We construct Euclidean random fields $X$ over $\R^d$, by convoluting generalized white noise $F$ with some integral kernels $G$, as $X=G* F$. We study properties of Schwinger (or moment) functions of $X$. In particular, we give a general equivalent formulation of the cluster property in terms of truncated Schwinger functions which we then apply to the above fields. We present a partial negative result on the reflection positivity of convoluted generalized white noise. Furthermore, by representing the kernels $G_\a$ of the pseudo--differential operators $(-\D + m^2_0)^{-\alpha}$ for $\alpha \in (0,1)$ and $m_0>0$ as Laplace transforms we perform the analytic continuation of the (truncated) Schwinger functions of $X=G_\alpha * F$, obtaining the corresponding (truncated) Wightman distributions on Minkowski space which satisfy the relativistic postulates on invariance, spectral property, locality and cluster property. Finally we give some remarks on scattering theory for these models.

[1]  Srinivasa Varadhan,et al.  Stochastic analysis and applications , 2002 .

[2]  S. Albeverio,et al.  Models of Local Relativistic Quantum Fields with Indefinite Metric (in All Dimensions) , 1997, math-ph/0409057.

[3]  S. Albeverio,et al.  On the Lattice Approximation for Certain Generalized Vector Markov Fields in Four Spacetime Dimensions , 1997 .

[4]  Comments on a recent solution to Wightman's axioms , 1996 .

[5]  C. Read Quantum field theories in all dimensions , 1996 .

[6]  Claas Becker Wilson Loops in Two-Dimensional Space-Time Regarded as White Noise , 1995 .

[7]  J. Klauder Poisson Distributions for Sharp-Time Fields: Antidote for Triviality , 1995, hep-th/9511202.

[8]  Jörg Schäfer White Noise on Vector Bundles and Local Functionals , 1995 .

[9]  S. Albeverio,et al.  Euclidean random fields obtained by convolution from generalized white noise , 1995 .

[10]  Yury M. Zinoviev Equivalence of the Euclidean and Wightman Field Theories , 1994, hep-th/9408009.

[11]  A convergent lattice approximation for nonlinear electromagnetic fields in four dimensions , 1993 .

[12]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[13]  I. Segal,et al.  Introduction to Algebraic and Constructive Quantum Field Theory , 1992 .

[14]  Singular operators on boson fields as forms on spaces of entire functions on Hilbert space , 1991 .

[15]  H. Tamura On the possibility of confinement caused by nonlinear electromagnetic interaction , 1991 .

[16]  S. Albeverio,et al.  Conformally Invariant and Reflection Positive Random Fields in Two Dimensions , 1991 .

[17]  Random fields as solutions of the inhomogeneous quaternionic Cauchy-Riemann equation. I. Invariance and analytic continuation , 1990 .

[18]  S. Albeverio,et al.  A Model of four space-time dimensional gauge fields: Reflection positivity for associated random currents , 1990 .

[19]  Anatolii A. Logunov,et al.  General Principles of Quantum Field Theory , 1990 .

[20]  Representation and Construction of Multiplicative Noise , 1989 .

[21]  S. Albeverio,et al.  Uniqueness and global Markov property for Euclidean fields: The case of general polynomial interactions , 1989 .

[22]  L. Gross,et al.  Two dimensional Yang-Mills theory via stochastic differential equations , 1989 .

[23]  Construction of quantized Higgs-like fields in two dimensions , 1989 .

[24]  S. Albeverio,et al.  Covariant markovian random fields in four space-time dimensions with nonlinear electromagnetic interaction , 1989 .

[25]  S. Albeverio,et al.  Construction of interacting local relativistic quantum fields in four spacetime dimensions , 1988 .

[26]  Quaternionic non-abelian relativistic quantum fields in four space-time dimensions , 1987 .

[27]  Euclidean Markov fields and relativistic quantum fields from stochastic partial differential equations in four dimensions , 1986 .

[28]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[29]  B. Zegarliński,et al.  Uniqueness and the global Markov property for Euclidean fields: The case of general exponential interaction , 1984 .

[30]  伊藤 清 Foundations of stochastic differential equations in infinite dimensional spaces , 1984 .

[31]  Markov cosurfaces and gauge fields , 1984 .

[32]  R. Gielerak Verification of the global Markov property in some class of strongly coupled exponential interactions , 1983 .

[33]  On infinitely divisible OS-positive random fields , 1983 .

[34]  Erhard Seiler,et al.  Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics , 1982 .

[35]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[36]  Infrared singularities, vacuum structure and pure phases in local quantum field theory , 1980 .

[37]  S. Albeverio,et al.  Uniqueness and the global Markov property for Euclidean fields. The case of trigonometric interactions , 1979 .

[38]  J. Yngvason,et al.  Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points , 1976 .

[39]  H. Borchers,et al.  Integral representations for Schwinger functionals and the moment problem over nuclear spaces , 1975 .

[40]  Barry Simon,et al.  The P(φ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics , 1975 .

[41]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[42]  V. Glaser On the equivalence of the Euclidean and Wightman formulation of field theory , 1974 .

[43]  G. C. Hegerfeldt From Euclidean to relativistic fields and on the notion of Markoff fields , 1974 .

[44]  J. Fröhlich Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of $P(\varphi )_2$-models , 1974 .

[45]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[46]  Robert Schrader,et al.  Axioms for Euclidean Green's functions II , 1973 .

[47]  Edward Nelson The free Markoff field , 1973 .

[48]  R. Schrader,et al.  Axioms for Euclidean Green's functions , 1973 .

[49]  Edward Nelson,et al.  Construction of quantum fields from Markoff fields. , 1973 .

[50]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[51]  L. Pitt A Markov property for Gaussian processes with a multidimensional parameter , 1971 .

[52]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[53]  K. Hepp On the connection between the LSZ and Wightman quantum field theory , 1965 .

[54]  ON THE CONNECTION OF SPIN AND COMMUTATION RELATIONS BETWEEN DIFFERENT FIELDS , 1961 .

[55]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.