Quantification of fat infiltration in oculopharyngeal muscular dystrophy: Comparison of three MR imaging methods

To analyze and compare three quantitative MRI methods to determine the degree of muscle involvement in oculopharyngeal muscular dystrophy (OPMD).

[1]  J. Rommens,et al.  Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy , 1998, Nature Genetics.

[2]  G H Glover,et al.  An extended two‐point dixon algorithm for calculating separate water, fat, and B0 images , 1997, Magnetic resonance in medicine.

[3]  F. Jolesz,et al.  Coherence transfer by isotropic mixing in carr‐purcell‐meiboom‐gill imaging: Implications for the bright fat phenomenon in fast spin‐echo imaging , 1996, Magnetic resonance in medicine.

[4]  R V Mulkern,et al.  Fast three-point dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging. , 2001, AJR. American journal of roentgenology.

[5]  S. Majumdar,et al.  Quantitative MR relaxometry study of muscle composition and function in duchenne muscular dystrophy , 1994, Journal of magnetic resonance imaging : JMRI.

[6]  G. Israel,et al.  Pelvic imaging using a t1w fat‐suppressed three‐dimensional dual echo dixon technique at 3T , 2008, Journal of magnetic resonance imaging : JMRI.

[7]  H. Hussain,et al.  Hepatic fat fraction: MR imaging for quantitative measurement and display--early experience. , 2005, Radiology.

[8]  S. Blumen,et al.  Epidemiology and inheritance of oculopharyngeal muscular dystrophy in Israel , 1997, Neuromuscular Disorders.

[9]  R. Sener,et al.  Oculopharyngeal muscular dystrophy: clinical and CT findings. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[10]  Roland R. Lee,et al.  Magnetic Resonance Imaging and Computed Tomography of Skeletal Muscles in Oculopharyngeal Muscular Dystrophy , 2005, Journal of clinical neuromuscular disease.

[11]  D. Birchall,et al.  MRI for the demonstration of subclinical muscle involvement in muscular dystrophy. , 2007, Clinical radiology.

[12]  Jingfei Ma,et al.  T2‐weighted spine imaging with a fast three‐point dixon technique: Comparison with chemical shift selective fat suppression , 2004, Journal of magnetic resonance imaging : JMRI.

[13]  Francesco Muntoni,et al.  Muscle MRI in inherited neuromuscular disorders: Past, present, and future , 2007, Journal of magnetic resonance imaging : JMRI.

[14]  Norbert Hosten,et al.  Non-invasive quantification of hepatic fat fraction by fast 1.0, 1.5 and 3.0 T MR imaging. , 2007, European journal of radiology.

[15]  Graham Wright,et al.  Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. , 2004, AJR. American journal of roentgenology.

[16]  A. Allerhand Analysis of Carr—Purcell Spin‐Echo NMR Experiments on Multiple‐Spin Systems. I. The Effect of Homonuclear Coupling , 1966 .

[17]  Sue Healey,et al.  Oculopharyngeal Muscular Dystrophy , 1963, British medical journal.

[18]  Mike P. Wattjes,et al.  Neuromuscular imaging in inherited muscle diseases , 2010, European Radiology.

[19]  R. Kamman,et al.  Multi-exponential relaxation analysis with MR imaging and NMR spectroscopy using fat-water systems. , 1987, Magnetic resonance imaging.

[20]  P. Bendel,et al.  An analysis of fast imaging sequences with steady‐state transverse magnetization refocusing , 1988, Magnetic resonance in medicine.

[21]  Hyeonjin Kim,et al.  Comparative MR study of hepatic fat quantification using single‐voxel proton spectroscopy, two‐point dixon and three‐point IDEAL , 2008, Magnetic resonance in medicine.

[22]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.

[23]  G. Rouleau,et al.  Progress in Understanding the Pathogenesis of Oculopharyngeal Muscular Dystrophy , 2003, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[24]  I. Joubert,et al.  Low-carbohydrate diet induced reduction of hepatic lipid content observed with a rapid non-invasive MRI technique. , 2006, The British journal of radiology.

[25]  M. Kase,et al.  Oculopharyngeal muscular dystrophy in a Japanese family with a short GCG expansion (GCG)11 in PABP2 gene , 2000, Neuromuscular Disorders.

[26]  Arend Heerschap,et al.  Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy , 2009, Neuromuscular Disorders.

[27]  J. Gore,et al.  Coupled‐spin fast spin‐echo MR imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[28]  J Szumowski,et al.  Two‐point Dixon technique for water‐fat signal decomposition with B0 inhomogeneity correction , 1997, Magnetic resonance in medicine.

[29]  A V Barger,et al.  Fat signal suppression in head and neck imaging using fast spin-echo-IDEAL technique. , 2006, AJNR. American journal of neuroradiology.

[30]  C. Hardy,et al.  A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? , 1987, Medical physics.

[31]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.

[32]  G. Watts,et al.  Measurement of liver fat by magnetic resonance imaging: relationships with body fat distribution, insulin sensitivity and plasma lipids in healthy men , 2006, Diabetes, obesity & metabolism.

[33]  Zhi-Pei Liang,et al.  Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium , 2009, Magnetic resonance in medicine.