Global Existence for Some 4-D Quasilinear Wave Equations with Low Regularity

[1]  Chengbo Wang The Glassey conjecture on asymptotically flat manifolds , 2013, 1306.6254.

[2]  M. Tohaneanu,et al.  The Strauss conjecture on Kerr black hole backgrounds , 2013, Mathematische Annalen.

[3]  Chengbo Wang,et al.  The Glassey conjecture with radially symmetric data , 2011, 1107.0847.

[4]  M. Tohaneanu,et al.  Price's Law on Nonstationary Space-Times , 2011, 1104.5437.

[5]  D. Fang,et al.  Almost Global Existence for Some Semilinear Wave Equations with Almost Critical Regularity , 2010, 1007.0733.

[6]  D. Fang,et al.  Weighted Strichartz estimates with angular regularity and their applications , 2008, 0802.0058.

[7]  Yi Zhou,et al.  Global low regularity solutions of quasi-linear wave equations , 2007, Advances in Differential Equations.

[8]  Jason Metcalfe,et al.  Long-Time Existence of Quasilinear Wave Equations Exterior to Star-Shaped Obstacles via Energy Methods , 2006, SIAM J. Math. Anal..

[9]  Hans Lindblad Global Solutions of Quasilinear Wave Equations , 2005, math/0511461.

[10]  Hart F. Smith,et al.  Sharp local well-posedness results for the nonlinear wave equation , 2005 .

[11]  D. Fang,et al.  LOCAL WELL-POSEDNESS AND ILL-POSEDNESS ON THE EQUATION OF TYPE □u = uk(∂u)α , 2005 .

[12]  Jacob Sterbenz Global regularity and scattering for general non-linear wave equations II. (4+1) dimensional Yang-Mills equations in the Lorentz gauge , 2004, math/0402191.

[13]  Yi Zhou BLOW UP OF SOLUTIONS TO THE CAUCHY PROBLEM FOR NONLINEAR WAVE EQUATIONS , 2001 .

[14]  N. Tzvetkov Existence of global solutions to nonlinear massless Dirac system and wave equation with small data , 1998 .

[15]  D. Tataru ON THE EQUATION ✷u = |∇u| 2 IN 5+1 DIMENSIONS , 1999 .

[16]  K. Tsutaya,et al.  Global existence and asymptotic behavior of solutions for nonlinear wave equations , 1995 .