Naturalness, the autonomy of scales, and the 125 GeV Higgs

Abstract The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and that it was reasonable for physicists to endorse it. Its possible failure to be realized in nature, as suggested by recent LHC data, thus represents an empirical challenge to certain foundational aspects of our understanding of QFT. In particular, I argue that its failure would undermine one class of recent proposals which claim that QFT provides us with a picture of the world as being structured into quasi-autonomous physical domains.

[1]  Jonathan L. Feng Naturalness and the Status of Supersymmetry , 2013, 1302.6587.

[2]  F. Levin An Introduction to Quantum Theory , 2001 .

[3]  Robert W. Batterman,et al.  The Oxford Handbook of Philosophy of Physics , 2013 .

[4]  Joseph Polchinski Effective field theory and the Fermi surface , 1992 .

[5]  Gerard 't Hooft,et al.  Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , 1979 .

[6]  Reductionism, emergence, and effective field theories , 2001, physics/0101039.

[7]  I. Montvay,et al.  Quantum Fields on a Lattice: Introduction , 1994 .

[8]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[9]  S. Pokorski,et al.  Gauge Field Theories: Spontaneous and explicit global symmetry breaking , 1987 .

[10]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[11]  S. Glashow,et al.  Weak Interactions with Lepton-Hadron Symmetry , 1970 .

[12]  S. Dawson Introduction to Electroweak Symmetry Breaking , 1999, hep-ph/9901280.

[13]  B. Ovrut,et al.  New approach to effective field theories , 1980 .

[14]  E. Bertuzzo SUSY after LHC8: a brief overview , 2013, 1307.0318.

[15]  C. Cookson The Asymptotic Safety Scenario In Quantum Gravity , 2015 .

[16]  A. Duncan,et al.  The Conceptual Framework of Quantum Field Theory , 2012 .

[17]  R. Batterman The Tyranny of Scales , 2013 .

[18]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[19]  J. Wells The Utility of Naturalness, and how its Application to Quantum Electrodynamics envisages the Standard Model and Higgs Boson , 2013, 1305.3434.

[20]  Matthew D. Schwartz,et al.  Quantum Field Theory and the Standard Model , 2013 .

[21]  Alan D. Martin,et al.  Review of Particle Physics , 2014, 1412.1408.

[22]  G. Ellis,et al.  Universe or Multiverse , 2009 .

[23]  M. Gaillard,et al.  Search for Charm , 1975 .

[24]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[25]  J. Donoghue The fine-tuning problems of particle physics and anthropic mechanisms , 2007, 0710.4080.

[26]  K. Intriligator,et al.  Lectures on supersymmetry breaking , 2007, hep-ph/0702069.

[27]  S. Hartmann Effective field theories, reductionism and scientific explanation , 2001 .

[28]  A. Grinbaum On the eve of the LHC: Conceptual questions in high-energy physics , 2008, 0806.4268.

[29]  M. Gaillard,et al.  Rare Decay Modes of the K-Mesons in Gauge Theories , 1974 .

[30]  T. Appelquist,et al.  Infrared Singularities and Massive Fields , 1975 .

[31]  Nathaniel Craig,et al.  The State of Supersymmetry after Run I of the LHC , 2013, 1309.0528.

[32]  Michael Aizenman,et al.  Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .

[33]  D. J. Callaway Triviality pursuit: Can elementary scalar particles exist? , 1988 .

[34]  R. Barbieri Electroweak theory after the first Large Hadron Collider phase , 2013, 1309.3473.

[35]  C. Wetterich Fine-tuning problem and the renormalization group , 1984 .

[36]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[37]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[38]  K. Wilson The Origins of Lattice Gauge Theory , 2004, hep-lat/0412043.

[39]  T. Cao,et al.  The conceptual foundations and the philosophical aspects of renormalization theory , 1993, Synthese.

[40]  R. Barbieri,et al.  Upper Bounds on Supersymmetric Particle Masses , 1988 .

[41]  G. Giudice Naturalness after LHC8 , 2013, 1307.7879.

[42]  Koray Karaca,et al.  Philosophical perspectives on ad hoc hypotheses and the Higgs mechanism , 2013, Synthese.

[43]  J. Bain Effective field theories , 2013 .

[44]  C. Burgess The Cosmological Constant Problem: Why it's hard to get Dark Energy from Micro-physics , 2013, 1309.4133.

[45]  A. Grinbaum Which Fine-Tuning Arguments Are Fine? , 2009, 0903.4055.

[46]  Nick Huggett,et al.  The renormalisation group and effective field theories , 2005, Synthese.

[47]  D. Miller,et al.  New measure of fine tuning , 2007, 0705.2241.

[48]  G. Giudice Naturally Speaking: The Naturalness Criterion and Physics at the LHC , 2008, 0801.2562.

[49]  B. Richter Theory in particle physics: Theological speculation versus practical knowledge , 2006 .

[50]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .