Vibration-Based Structural Health Monitoring Under Variable Environmental or Operational Conditions

The main postulate in vibration-based structural health monitoring (SHM) is that structural damage can be detected from changes in the damage-sensitive features extracted from vibration measurements. In order to detect damage with a high sensitivity and reliability, several functions are needed. Control charts are applied to detect statistically significant changes in the features, sensor faults are identified using the minimum mean square error (MMSE) estimation, and the undesired effects of environmental or operational variations are removed using the linear factor analysis or the nonlinear mixture of linear factor analysers model. Different applications and data sets are analysed, including a wooden bridge and a vehicle crane.

[1]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[2]  Thomas F. Edgar,et al.  Identification of faulty sensors using principal component analysis , 1996 .

[3]  Charles R. Farrar,et al.  Data normalization issue for vibration-based structural health monitoring , 2000 .

[4]  Hoon Sohn,et al.  Environmental variability of modal properties , 1999 .

[5]  Charles R. Farrar,et al.  Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review , 1996 .

[6]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[7]  Hoon Sohn,et al.  Statistical Damage Classification Under Changing Environmental and Operational Conditions , 2002 .

[8]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[9]  Gaëtan Kerschen,et al.  Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis , 2005 .

[10]  Rolf G. Rohrmann,et al.  Structural causes of temperature affected modal data of civil structures obtained by long time monitoring , 2000 .

[11]  Gaëtan Kerschen,et al.  Sensor Validation for On-line Vibration Monitoring , 2004 .

[12]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[13]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[14]  P. Guillaume,et al.  A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties , 2005 .

[15]  Harold W. Sorenson,et al.  Parameter estimation: Principles and problems , 1980 .

[16]  Guido De Roeck,et al.  EFFECT OF TEMPERATURE ON DYNAMIC SYSTEM PARAMETERS OF A HIGHWAY BRIDGE , 1997 .

[17]  Bart Peeters,et al.  System identification and damage detection in civil engineering , 2000 .

[18]  Charles R. Farrar,et al.  Variability of modal parameters measured on the alamosa canyon bridge , 1996 .

[19]  Chih-Chen Chang,et al.  A wavelet packet based method for structural damage assessment , 2002 .

[20]  Fabio Casciati Proceedings of the Third World Conference on Structural Control , 2003 .

[21]  S. Alampalli,et al.  Influence of in-service environment on modal parameters , 1998 .

[22]  Keith Worden,et al.  DAMAGE DETECTION USING OUTLIER ANALYSIS , 2000 .

[23]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[24]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[25]  Guido De Roeck,et al.  Vibration based SHM: comparison of the performance of modal features vs features extracted from spatial filters under changing environmental conditions , 2006 .

[26]  Rune Brincker,et al.  Proceedings of the 10th International Modal Analysis Conference , 1993 .

[27]  Charles R. Farrar,et al.  Structural Health Monitoring Using Statistical Pattern Recognition Techniques , 2001 .

[28]  Subhash Sharma Applied multivariate techniques , 1995 .

[29]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[30]  A. M. R. Ribeiro,et al.  Using the Detection and Relative Damage Quantification Indicator (DRQ) with Transmissibility , 2007 .

[31]  Hoon Sohn,et al.  Structural Health Monitoring Using Statistical Process Control , 2000 .

[32]  Gaëtan Kerschen,et al.  Structural damage diagnosis under varying environmental conditions - Part II: local PCA for non-linear cases , 2005 .

[33]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .