Enhanced Error Estimates for Augmented Subspace Method

In this paper, some enhanced error estimates are derived for the augmented subspace methods which are designed for solving eigenvalue problems. We will show that the augmented subspace methods have the second order convergence rate which is better than the existing results. These sharper estimates provide a new dependence of convergence rate on the coarse spaces in augmented subspace methods. These new results are also validated by some numerical examples.

[1]  Andrew Knyazev,et al.  Preconditioned Eigensolvers - an Oxymoron? , 1998 .

[2]  F. Chatelin Spectral approximation of linear operators , 2011 .

[3]  Hehu Xie,et al.  A Parallel Augmented Subspace Method for Eigenvalue Problems , 2019, SIAM J. Sci. Comput..

[4]  Hehu Xie,et al.  A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[5]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[6]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[7]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[8]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[9]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2016, J. Comput. Phys..

[12]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[13]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[14]  D. Sorensen IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .

[15]  Andrew V. Knyazev,et al.  A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Hehu Xie,et al.  Fast Eigenpairs Computation with Operator Adapted Wavelets and Hierarchical Subspace Correction , 2018, SIAM J. Numer. Anal..

[18]  G. Burton Sobolev Spaces , 2013 .

[19]  E. D'yakonov,et al.  Minimization of the computational labor in determining the first eigenvalues of differential operators , 1980 .

[20]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[21]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[22]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.