BAYESIAN META-ANALYSIS FOR IDENTIFYING PERIODICALLY EXPRESSED GENES IN FISSION YEAST CELL CYCLE

The effort to identify genes with periodic expression during the cell cycle from genome-wide microarray time series data has been ongoing for a decade. However, the lack of rigorous modeling of periodic expression as well as the lack of a comprehensive model for integrating information across genes and experiments has impaired the effort for the accurate identification of periodically expressed genes. To address the problem, we introduce a Bayesian model to integrate multiple independent microarray data sets from three recent genome-wide cell cycle studies on fission yeast. A hierarchical model was used for data integration. In order to facilitate an efficient Monte Carlo sampling from the joint posterior distribution, we develop a novel Metropolis-Hastings group move. A surprising finding from our integrated analysis is that more than 40% of the genes in fission yeast are significantly periodically expressed, greatly enhancing the reported 10-15% of the genes in the current literature. It calls for a reconsideration of the periodically expressed gene detection problem.

[1]  Veselka Boeva,et al.  Fusing time series expression data through hybrid aggregation and hierarchical merge , 2008, ECCB.

[2]  R. Spang,et al.  Role for E2F in Control of Both DNA Replication and Mitotic Functions as Revealed from DNA Microarray Analysis , 2001, Molecular and Cellular Biology.

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  Wilhelm Gruissem,et al.  Cell Cycle-regulated Gene Expression inArabidopsis * , 2002, The Journal of Biological Chemistry.

[6]  I. Simon,et al.  Combined analysis reveals a core set of cycling genes , 2007, Genome Biology.

[7]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Adam P. Rosebrock,et al.  The Cell Cycle–Regulated Genes of Schizosaccharomyces pombe , 2005, PLoS biology.

[9]  Jun S. Liu,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[10]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[11]  Kyung-Ah Lee,et al.  DNA microarray analysis in down syndrome , 2002 .

[12]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[13]  Matthias E. Futschik,et al.  Are we Overestimating the Number of Cell-Cycling Genes? The Impact of Background Models , 2008, German Conference on Bioinformatics.

[14]  Anders Berglund,et al.  A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription , 2003, Bioinform..

[15]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[16]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[17]  Ronald K. Pearson,et al.  BMC Bioinformatics BioMed Central Methodology article , 2005 .

[18]  Shyamal D Peddada,et al.  A random-periods model for expression of cell-cycle genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[20]  L. Jensen,et al.  The more the merrier: comparative analysis of microarray studies on cell cycle‐regulated genes in fission yeast , 2006, Yeast.

[21]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[22]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[23]  A. Brazma,et al.  Global transcriptional responses of fission yeast to environmental stress. , 2003, Molecular biology of the cell.

[24]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[25]  A. Kudlicki,et al.  Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes , 2005, Science.

[26]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[27]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[28]  Jon Wakefield,et al.  Bayesian Analysis of Cell-Cycle Gene Expression Data , 2005 .

[29]  K. Shedden,et al.  Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[31]  Korbinian Strimmer,et al.  Identifying periodically expressed transcripts in microarray time series data , 2008, Bioinform..

[32]  L. Wong,et al.  Identification of cell cycle-regulated genes in fission yeast. , 2005, Molecular biology of the cell.

[33]  Andrey A. Ptitsyn,et al.  Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes , 2007, PLoS Comput. Biol..

[34]  Matthew Berriman,et al.  GeneDB: a resource for prokaryotic and eukaryotic organisms , 2004, Nucleic Acids Res..

[35]  Jean-Paul Thiery,et al.  Identifying genes from up-down properties of microarray expression series , 2005, Bioinform..

[36]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[37]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[38]  Xiao-Li Meng,et al.  Posterior Predictive Assessment of Model Fitnessvia Realized , 1995 .

[39]  I. Simon,et al.  Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells , 2008, Proceedings of the National Academy of Sciences.

[40]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[41]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[42]  P. Lio’,et al.  Periodic gene expression program of the fission yeast cell cycle , 2004, Nature Genetics.

[43]  L. P. Zhao,et al.  Statistical modeling of large microarray data sets to identify stimulus-response profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Sherr Cancer Cell Cycles , 1996, Science.

[45]  D. Murray,et al.  A genomewide oscillation in transcription gates DNA replication and cell cycle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Peer Bork,et al.  Comparison of computational methods for the identification of cell cycle-regulated genes , 2005, Bioinform..

[47]  A. U.S.,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[48]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[49]  Zhaohui S. Qin,et al.  Statistical resynchronization and Bayesian detection of periodically expressed genes. , 2004, Nucleic acids research.

[50]  Hongzhe Li,et al.  Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data , 2004, Bioinform..