Comparative metabolite analysis of Delftia-Bradyrhizobium co-inoculated soybean plants using UHPLC-HRMS-based metabolomic profiling

[1]  S. Castro-Sowinski,et al.  Facing the communication between soybean plants and microorganisms (Bradyrhizobium and Delftia) by quantitative shotgun proteomics , 2021, Symbiosis.

[2]  S. Castro-Sowinski,et al.  Improved nodulation and seed yield of soybean (Glycine max) with a new isoflavone-based inoculant of Bradyrhizobium elkanii , 2020 .

[3]  M. Frank,et al.  No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis , 2020, Plant communications.

[4]  M. C. Parra-Lobato,et al.  Transcriptome and Hormone Analyses Revealed Insights into Hormonal and Vesicle Trafficking Regulation among Olea europaea Fruit Tissues in Late Development , 2020, International journal of molecular sciences.

[5]  L. de-Bashan,et al.  Everything you must know about Azospirillum and its impact on agriculture and beyond , 2020, Biology and Fertility of Soils.

[6]  J. Saurina,et al.  Targeted UHPLC–HRMS (Orbitrap) Polyphenolic and Capsaicinoid Profiling for the Chemometric Characterization and Classification of Paprika with Protected Designation of Origin (PDO) Attributes , 2020, Molecules.

[7]  Hailing Jin,et al.  Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs‐mediated basal immunity in Arabidopsis , 2020, Molecular plant pathology.

[8]  M. Hungria,et al.  Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates , 2020, Biology and Fertility of Soils.

[9]  M. Hungria,et al.  Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture , 2019, AMB Express.

[10]  S. Castro-Sowinski,et al.  Identification of Plant Compounds Involved in the Microbe-Plant Communication During the Coinoculation of Soybean with Bradyrhizobium elkanii and Delftia sp. strain JD2. , 2018, Molecular plant-microbe interactions : MPMI.

[11]  Jun Yang,et al.  Hormone modulation of legume-rhizobial symbiosis. , 2018, Journal of integrative plant biology.

[12]  H. Musto,et al.  The complex pattern of codon usage evolution in the family Comamonadaceae , 2018 .

[13]  E. Deinum,et al.  Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules , 2018, Journal of experimental botany.

[14]  C. Yost,et al.  Complete Genome Sequence of Delftia acidovorans RAY209, a Plant Growth-Promoting Rhizobacterium for Canola and Soybean , 2017, Genome Announcements.

[15]  F. Frugier,et al.  How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions , 2016, Front. Plant Sci..

[16]  H. Musto,et al.  Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach , 2016 .

[17]  C. Cagide,et al.  The Sustainable Use of Delftia in Agriculture, Bioremediation, and Bioproducts Synthesis , 2016 .

[18]  S. Castro-Sowinski,et al.  The Contribution of Secondary Metabolites in the Success of Bioformulations , 2016 .

[19]  A. I. Hassen,et al.  Microbial Inoculants as Agents of Growth Promotion and Abiotic Stress Tolerance in Plants , 2016 .

[20]  A. Sobottka,et al.  Pattern of allelochemical distribution in leaves and roots of tough lovegrass (Eragrostis plana Nees.) , 2015 .

[21]  T. Bisseling,et al.  Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. , 2015, Molecular plant.

[22]  M. Hungria,et al.  Soybean Seed Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A New Biotechnological Tool to Improve Yield and Sustainability , 2015 .

[23]  S. Castro-Sowinski,et al.  The Pattern of Secreted Molecules During the Co-Inoculation of Alfalfa Plants With Sinorhizobium meliloti and Delftia sp. strain JD2: An Interaction That Improves Plant Yield. , 2015, Molecular plant-microbe interactions : MPMI.

[24]  U. Mathesius,et al.  Phytohormone Regulation of Legume-Rhizobia Interactions , 2014, Journal of Chemical Ecology.

[25]  N. Tejera,et al.  Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. , 2014, Plant science : an international journal of experimental plant biology.

[26]  R. Marchiosi,et al.  Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth , 2013, PloS one.

[27]  R. Marchiosi,et al.  Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth , 2013, PloS one.

[28]  C. Prigent-Combaret,et al.  Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. , 2013, Phytochemistry.

[29]  U. Mathesius,et al.  Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy , 2013, Journal of Chemical Ecology.

[30]  J. Cubero,et al.  The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses , 2013, Microbial biotechnology.

[31]  S. Castro-Sowinski,et al.  The Complex Molecular Signaling Network in Microbe–Plant Interaction , 2013 .

[32]  S. Castro-Sowinski,et al.  Legume Crops, Importance and Use of Bacterial Inoculation to Increase Production , 2012 .

[33]  Cecilia Martínez-Rosales,et al.  The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies , 2012, Current Microbiology.

[34]  R. Bally,et al.  Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions , 2012, Plant and Soil.

[35]  R. Bally,et al.  Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions , 2011, Plant and Soil.

[36]  G. A. Bubna,et al.  Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). , 2011, Journal of plant physiology.

[37]  R. Bally,et al.  Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. , 2011, The New phytologist.

[38]  S. Benintende,et al.  Comparación entre coinoculación con Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja , 2010 .

[39]  R. Marchiosi,et al.  Naringenin inhibits the growth and stimulates the lignification of soybean root , 2010 .

[40]  E. Velázquez,et al.  Legumes: A Healthy and Ecological Source of Flavonoids , 2010 .

[41]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[42]  C. Pieterse,et al.  Networking by small-molecule hormones in plant immunity. , 2009, Nature chemical biology.

[43]  G. A. Bubna,et al.  Soybean root growth inhibition and lignification induced by p-coumaric acid , 2009 .

[44]  S. Castro-Sowinski,et al.  Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. , 2009, FEMS microbiology letters.

[45]  J. Vivanco,et al.  Regulation and function of root exudates. , 2008, Plant, cell & environment.

[46]  K. Mourão,et al.  Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action , 2008, Journal of Chemical Ecology.

[47]  J. Specht,et al.  Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review , 2008 .

[48]  J. Downie,et al.  Coordinating nodule morphogenesis with rhizobial infection in legumes. , 2008, Annual review of plant biology.

[49]  Murray Grant,et al.  Salicylic acid in plant defence--the players and protagonists. , 2007, Current opinion in plant biology.

[50]  G. Oldroyd Plant science. Nodules and hormones. , 2007, Science.

[51]  W. Khan,et al.  Jasmonates induce Nod factor production by Bradyrhizobium japonicum. , 2006, Plant physiology and biochemistry : PPB.

[52]  P. Morris,et al.  Perception and modification of plant flavonoid signals by rhizosphere microorganisms. , 2006, Environmental Microbiology.

[53]  J. Nowak,et al.  Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN , 2006, Applied and Environmental Microbiology.

[54]  N. Eckardt The Role of Flavonoids in Root Nodule Development and Auxin Transport in Medicago truncatula , 2006, The Plant Cell Online.

[55]  Vinod Kumar,et al.  Rhizobium-Mediated Induction of Phenolics and Plant Growth Promotion in Rice (Oryza sativa L.) , 2006, Current Microbiology.

[56]  Donald L. Smith,et al.  Pre‐incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures , 2005 .

[57]  J. Nowak,et al.  Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN , 2005, Applied and Environmental Microbiology.

[58]  R. R. Simard,et al.  Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean , 1994, Journal of Chemical Ecology.

[59]  Y. Chan Utilization of simple phenolics for dinitrogen fixation by soil diazotrophic bacteria , 1986, Plant and Soil.

[60]  G. Seneviratne,et al.  Phenolic acids: Possible agents of modifying N2-fixing symbiosis through rhizobial alteration? , 2003, Plant and Soil.

[61]  K. Lindström,et al.  Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate. , 2003, FEMS microbiology letters.

[62]  D. Singh,et al.  Effect of Plant Growth-Promoting Rhizobacteria and Culture Filtrate of Sclerotium rolfsii on Phenolic and Salicylic Acid Contents in Chickpea (Cicer arietinum) , 2003, Current Microbiology.

[63]  M. Miransari,et al.  Effects of Salicylic Acid on the Development and Root Nodulation of Soybean Seedlings , 2000 .

[64]  O. Yu,et al.  Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes , 2000, Nature Biotechnology.

[65]  N. Benhamou,et al.  Bacterial-Mediated Induced Resistance in Cucumber: Beneficial Effect of the Endophytic Bacterium Serratia plymuthica on the Protection Against Infection by Pythium ultimum. , 2000, Phytopathology.

[66]  C. Pieterse,et al.  Systemic resistance induced by rhizosphere bacteria. , 1998, Annual review of phytopathology.

[67]  J. Cooper,et al.  Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity , 1995 .

[68]  R. S. Araújo,et al.  Manual de métodos empregados em estudos de microbiologia agrícola. , 1994 .

[69]  G. Stacey,et al.  Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. , 1992, The Journal of biological chemistry.

[70]  M. Parniske,et al.  Chemotaxis and nod Gene Activity of Bradyrhizobium japonicum in Response to Hydroxycinnamic Acids and Isoflavonoids , 1991, Applied and environmental microbiology.

[71]  N. Peters,et al.  Phenolic compounds as regulators of gene expression in plant-microbe relations. , 1990, Molecular plant-microbe interactions : MPMI.

[72]  M. N. Zaprometov Tannins, Lignans, and Lignins , 1988 .

[73]  J. Vincent A manual for the practical study of root-nodule bacteria , 1971 .