Nanotechnology for smart grids and superconducting cables

Abstract In this chapter, a comprehensive description is given of the fascinating and crucial roles superconductors perform on the electric power sector to form futuristic smart grids. The chapter answers the basic underlying questions, which include the following: What is an electric power grid? What are superconductors? How do superconductors provide opportunities to eliminate the drawbacks which limit the performance of the present grid system? Moreover, the chapter gives an overview of the major challenges faced by the electric power grid and its components: electric generators, storage system, transformer, voltage regulators, and fault current limiters.

[1]  T. K. Dey,et al.  Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids , 2011 .

[2]  L. Colla,et al.  Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles , 2012 .

[4]  V. V. Rao,et al.  Influence of mass flow rate on Turbulent Kinetic Energy (TKE) distribution in Cable-in-Conduit Conductors (CICCs) used for fusion grade magnets , 2013 .

[5]  Haisheng Chen,et al.  Fundamentals and applications of cryogen as a thermal energy carrier: a critical assessment. , 2010 .

[6]  Rahman Saidur,et al.  Application of Computational Fluid Dynamics (CFD) for nanofluids , 2012 .

[7]  Wei Wang A Comprehensive Model for the Enhanced Thermal Conductivity of Nanofluids , 2013 .

[8]  S. M. Peyghambarzadeh,et al.  Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels , 2014 .

[9]  Jiyun Zhao,et al.  Performance improvements of microchannel heat sink using wavy channel and nanofluids , 2015 .

[10]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[11]  D. T. Verebelyi,et al.  The status of commercial and developmental HTS wires , 2003 .

[12]  Sangkwon Jeong,et al.  Design of high efficiency mixed refrigerant Joule–Thomson refrigerator for cooling HTS cable , 2011 .

[13]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[14]  Masoud Rahimi,et al.  Brazilian Journal of Chemical Engineering CFD AND EXPERIMENTAL INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS OF ALUMINA NANOFLUIDS UNDER THE LAMINAR FLOW REGIME , 2014 .

[15]  Madhusree Kole,et al.  Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids , 2013 .

[16]  K. Tasaki,et al.  Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet , 2015 .

[17]  V. V. Rao,et al.  Pressure Drop and Heat Transfer Analysis of Long Length Internally Cooled HTS Cables , 2013, IEEE Transactions on Applied Superconductivity.

[18]  R. Shah,et al.  Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design , 2000 .

[19]  R. Mamat,et al.  Investigation of Al2O3 Nanofluid Viscosity for Different Water/EG Mixture Based , 2015 .

[20]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[21]  Bin Wei,et al.  Design of a High-Order Dual-Band Superconducting Filter With Controllable Frequencies and Bandwidths , 2014, IEEE Transactions on Applied Superconductivity.

[22]  H. Yang,et al.  Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable , 2016 .

[23]  M. A. Wahid,et al.  Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts , 2016 .

[24]  Hamid Reza Seyf,et al.  Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks , 2012 .

[25]  Jürgen Kellers,et al.  Reliable commercial HTS wire for power applications , 2002 .

[26]  Jianlin Yu,et al.  Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant , 2015 .

[27]  T. K. Dey,et al.  Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil , 2013 .

[28]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[29]  D. Das,et al.  Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids , 2007 .

[30]  Xu Bin,et al.  Investigation on the pressure drop during flow boiling of liquefied natural gas in a vertical micro-fin tube , 2015 .

[31]  D. Sekhar,et al.  Three dimensional CFD analysis of Cable-in-Conduit Conductors (CICCs) using porous medium approach , 2013 .

[32]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[33]  Xingya Chen,et al.  Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers , 2009 .

[34]  Madhusree Kole,et al.  Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids , 2012 .

[35]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[36]  J. M. McCloskey,et al.  Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Ravikanth S. Vajjha,et al.  Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger , 2014 .

[38]  S. Wongwises,et al.  Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids , 2009 .

[39]  R. Kumar,et al.  A review on thermophysical properties of nanofluids and heat transfer applications , 2017 .

[40]  P. C. Mishra,et al.  A brief review on viscosity of nanofluids , 2014, International Nano Letters.

[41]  Angel Huminic,et al.  Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review , 2016 .

[42]  Vincenzo Bianco,et al.  Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature , 2014 .

[43]  S. Sohn,et al.  The application of the cryogenic system on the HTS power cable circuit in actual grid , 2012 .

[44]  Sheng‐Qi Zhou,et al.  Measurement of the specific heat capacity of water-based Al2O3 nanofluid , 2008 .

[45]  M. Nazari,et al.  Application of nanofluids in thermosyphons: A review , 2018, Journal of Molecular Liquids.

[46]  X. Cai,et al.  Thermophysical properties of undercooled liquid Ni-Zr alloys: Melting temperature, density, excess volume and thermal expansion , 2017 .

[47]  L. Oellrich,et al.  Evaluation of a two-stage mixed refrigerant cascade for HTS cooling below 60 K , 2015 .

[48]  K. Anoop,et al.  Thermal evaluation of nanofluids in heat exchangers , 2013 .

[49]  R. Saidur,et al.  A comparative review on the specific heat of nanofluids for energy perspective , 2014 .

[50]  Angel Huminic,et al.  Application of nanofluids in heat exchangers: A review , 2012 .

[51]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[52]  Gang Chen,et al.  Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid , 2008 .

[53]  Stephen U. S. Choi,et al.  Cooling performance of a microchannel heat sink with nanofluids , 2006 .

[54]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[56]  C. Kleinstreuer,et al.  Thermal performance of nanofluid flow in microchannels , 2008 .

[57]  A. Karimipour New correlation for Nusselt number of nanofluid with Ag / Al2O3 / Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method , 2015 .

[58]  B. H. Salman,et al.  Experimental investigation of heat transfer enhancement in a microtube using nanofluids , 2014 .

[59]  Grant J Jensen,et al.  A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. , 2006, Journal of structural biology.

[60]  Hyomin Jeong,et al.  A numerical investigation on LNG flow and heat transfer characteristic in heat exchanger , 2014 .

[61]  Young-Chull Ahn,et al.  Production and dispersion stability of nanoparticles in nanofluids , 2008 .

[62]  T. K. Dey,et al.  Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids , 2012 .

[63]  Yeong Ho Lee,et al.  Modeling and simulation of HTS cables for scattering parameter analysis , 2016 .

[64]  F. S. Javadi,et al.  The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger , 2013 .

[65]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[66]  T. Hirai,et al.  Formation of Bismuth Strontium Calcium Copper Oxide Superconducting Films by Chemical Vapor Deposition , 1988 .

[67]  Ho-Myung Chang,et al.  Conduction-Cooling System for Superconducting Magnets at 20–30 K , 2014, IEEE Transactions on Applied Superconductivity.

[68]  C. Chao,et al.  Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids , 2015 .

[69]  Yi Liu,et al.  Modeling of a cryogenic liquid pool boiling by CFD simulation , 2015 .

[70]  G. Huminic,et al.  Thermo-physical properties of water based SiC nanofluids for heat transfer applications , 2017 .

[71]  R. Mamat,et al.  Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: A comprehensive review on performance , 2017 .

[72]  Haisheng Chen,et al.  Rheological behaviour of nanofluids containing tube / rod-like nanoparticles , 2009 .

[73]  Y. Sonvane,et al.  Review: Enhancing efficiency of solar thermal engineering systems by thermophysical properties of a promising nanofluids , 2017 .

[74]  Taketsune Nakamura,et al.  Cooling performance of hybrid refrigerant of solid nitrogen and small amount of neon for the purpose of HTS power applications , 2009 .

[75]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[76]  R. Duckworth,et al.  Cooling Configuration Design Considerations for Long-Length HTS Cables , 2009, IEEE Transactions on Applied Superconductivity.

[77]  H. Seyf,et al.  Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink , 2012 .

[78]  Rahman Saidur,et al.  Investigating the Heat Transfer Performance and Thermophysical Properties of Nanofluids in a Circular Micro-channel , 2013 .

[79]  X. Q. Yuan,et al.  Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications , 2017 .

[80]  Shigeru Yoshida,et al.  Subcooled liquid nitrogen refrigerator for HTS power systems , 2003 .

[81]  J. J. Smit,et al.  Thermal conductivity of fullerene and TiO2 nanofluids , 2013, 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.

[82]  Reza Karimi,et al.  CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube , 2016 .

[83]  P. R. Usurumarti,et al.  Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables , 2015 .

[84]  T. K. Dey,et al.  Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids , 2012 .

[85]  Raja Sekhar Dondapati,et al.  Parametric Evaluation of AC Losses in 500 MVA/1.1 kA High Temperature Superconducting (HTS) Cable for Efficient Power Transmission: Self Field Analysis , 2014, 2014 European Modelling Symposium.

[86]  D. Lelea,et al.  The micro-tube heat transfer and fluid flow of water based Al2O3 nanofluid with viscous dissipation ☆ , 2011 .

[87]  A. Solomon,et al.  Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid , 2014 .

[88]  C. A. N. Castro,et al.  Contribution of Brownian Motion in Thermal Conductivity of Nanofluids , 2011 .