Efficient Quantum Measurement Engines.

We propose quantum engines powered entirely by a position-resolving measurement performed on a quantum particle. These engines produce work by moving the quantum particle against a force. Unlike classical information-driven engines (e.g., Maxwell's demon), the energy is not extracted from a thermal hot source but directly from the observation process via a partial wave-function collapse of the particle. We present results for the work done and the efficiency for different values of the engine parameters. Feedback is required for optimal performance. We find that unit efficiency can be approached when one measurement outcome prepares the initial state of the next engine cycle, while the other outcomes leave the original state nearly unchanged.

[1]  H. Araki,et al.  Measurement of Quantum Mechanical Operators , 1960 .

[2]  P. Geltenbort,et al.  Realization of a gravity-resonance-spectroscopy technique , 2011 .

[3]  Peter Talkner,et al.  Single-temperature quantum engine without feedback control. , 2017, Physical review. E.

[4]  Marco Barbieri,et al.  Photonic Maxwell's Demon. , 2015, Physical review letters.

[5]  Paul Busch,et al.  Position measurements obeying momentum conservation. , 2011, Physical review letters.

[6]  Miguel Navascués,et al.  How energy conservation limits our measurements. , 2012, Physical review letters.

[7]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[8]  A. Matzkin Single particle nonlocality, geometric phases and time-dependent boundary conditions , 2017, 1706.08617.

[9]  J. Koski,et al.  Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. , 2014, Physical review letters.

[10]  Janet Anders,et al.  A quantum Szilard engine without heat from a thermal reservoir , 2017, 1706.00938.

[11]  J. Gea-Banacloche A quantum bouncing ball , 1999 .

[12]  M. Clusel,et al.  The role of quantum measurement in stochastic thermodynamics , 2016, 1607.02404.

[13]  T. Rudolph,et al.  The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry , 2012, 1209.0921.

[14]  Pierre Rouchon,et al.  Observing a quantum Maxwell demon at work , 2017, Proceedings of the National Academy of Sciences.

[15]  Mutsuo M. Yanase,et al.  Optimal Measuring Apparatus , 1961 .

[16]  B. Huard,et al.  Maxwell’s Demon in Superconducting Circuits , 2018, 1805.01224.

[17]  Gershon Kurizki,et al.  Work extraction via quantum nondemolition measurements of qubits in cavities: Non-Markovian effects , 2012, 1211.1772.

[18]  Takahiro Sagawa,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010, 1009.5287.

[19]  Alexia Auffeves,et al.  Extracting Work from Quantum Measurement in Maxwell's Demon Engines. , 2017, Physical review letters.

[20]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[21]  Takahiro Sagawa,et al.  Quantum Szilard engine. , 2010, Physical review letters.

[22]  W. Schleich,et al.  Atom-Chip Fountain Gravimeter. , 2016, Physical review letters.

[23]  E. Wigner Die Messung quantenmechanischer Operatoren , 1952 .

[24]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .