Visualization of erythrocyte stasis in the living human eye in health and disease

[1]  J. Sahel,et al.  Choriocapillaris: Fundamentals and advancements , 2021, Progress in Retinal and Eye Research.

[2]  John P Giannini,et al.  In-vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection. , 2021, Optica.

[3]  O. Saeedi,et al.  Erythrocyte-Mediated Angiography: Quantifying Absolute Episcleral Blood Flow in Humans. , 2020, Ophthalmology.

[4]  M. Kook,et al.  Choroidal Microvasculature Dropout Is Associated with Generalized Choroidal Vessel Loss within the ß-Parapapillary Atrophy in Glaucoma. , 2020, American journal of ophthalmology.

[5]  S. Ahmad,et al.  Controversies in the association of parapapillary atrophy with glaucoma , 2019, Taiwan journal of ophthalmology.

[6]  Mona A. Kaleem,et al.  Measurement of Retinal Microvascular Blood Velocity Using Erythrocyte Mediated Velocimetry , 2019, Scientific Reports.

[7]  A. Metha,et al.  Imaging relative stasis of the blood column in human retinal capillaries. , 2019, Biomedical optics express.

[8]  Eun Ji Lee,et al.  Evaluation of Parapapillary Choroidal Microvasculature Dropout and Progressive Retinal Nerve Fiber Layer Thinning in Patients With Glaucoma. , 2019, JAMA ophthalmology.

[9]  C. K. Park,et al.  Association Between Parapapillary Choroidal Vessel Density Measured With Optical Coherence Tomography Angiography and Future Visual Field Progression in Patients With Glaucoma. , 2019, JAMA ophthalmology.

[10]  Jianfei Liu,et al.  Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. , 2019, JCI insight.

[11]  Iwona Gorczynska,et al.  Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging. , 2018, Biomedical optics express.

[12]  Thomas Brox,et al.  U-Net: deep learning for cell counting, detection, and morphometry , 2018, Nature Methods.

[13]  Jianfei Liu,et al.  Combining multimodal adaptive optics imaging and angiography improves visualization of human eyes with cellular-level resolution , 2018, Communications Biology.

[14]  C. Girkin,et al.  Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. , 2018, Biomedical optics express.

[15]  H. Park,et al.  Choroidal Microvasculature Dropout Is Associated with Progressive Retinal Nerve Fiber Layer Thinning in Glaucoma with Disc Hemorrhage. , 2018, Ophthalmology.

[16]  A. Elsner,et al.  Adaptive optics imaging of the human retina , 2019, Progress in Retinal and Eye Research.

[17]  R. Flower,et al.  Observation and characterization of microvascular vasomotion using erythrocyte mediated ICG angiography (EM-ICG-A). , 2017, Microvascular research.

[18]  O. K. Başkurt,et al.  Effect of sulfur dioxide inhalation on erythrocyte deformability , 2016 .

[19]  I. Eames,et al.  Form, shape and function: segmented blood flow in the choriocapillaris , 2016, Scientific Reports.

[20]  J. Schallek,et al.  Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. , 2016, Biomedical optics express.

[21]  A. Dubra,et al.  In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy , 2016, Investigative ophthalmology & visual science.

[22]  S. Mansberger,et al.  Primary Open-Angle Glaucoma Suspect Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[23]  Alberto M. Gambaruto,et al.  Computational haemodynamics of small vessels using the Moving Particle Semi-implicit (MPS) method , 2015, J. Comput. Phys..

[24]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[25]  O. Saeedi,et al.  Autoregulation of optic nerve head blood flow and its role in open-angle glaucoma , 2014 .

[26]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[27]  Jost B Jonas,et al.  CHOROIDAL THICKNESS IN AGE-RELATED MACULAR DEGENERATION , 2014, Retina.

[28]  David Williams,et al.  Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. , 2013, Investigative ophthalmology & visual science.

[29]  David R Williams,et al.  In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. , 2013, Biomedical optics express.

[30]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[31]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[32]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[33]  Austin Roorda,et al.  Noninvasive visualization and analysis of parafoveal capillaries in humans. , 2010, Investigative ophthalmology & visual science.

[34]  R. Flower,et al.  Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells. , 2008, Investigative ophthalmology & visual science.

[35]  Leopold Schmetterer,et al.  Ocular blood flow in diabetes and age-related macular degeneration. , 2008, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[36]  Mehrdad Hamidi,et al.  Applications of carrier erythrocytes in delivery of biopharmaceuticals. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[37]  W. Schröter,et al.  Rheological properties of young and aged human erythrocytes , 1980, Klinische Wochenschrift.

[38]  Shin Yoneya,et al.  Patterns of the choriocapillaris , 1983, International Ophthalmology.

[39]  Andrzej W. Fryczkowski,et al.  Anatomical and functional choroidal lobuli , 2004, International Ophthalmology.

[40]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[41]  A. Roorda,et al.  Optimal pupil size in the human eye for axial resolution. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  N. D. Wangsa-Wirawan,et al.  Retinal Oxygen Fundamental and Clinical Aspects , 2003 .

[43]  H. Yamashita,et al.  Choroidal circulation in diabetic patients , 2001, Eye.

[44]  P. Luiten,et al.  Cerebral microvascular pathology in aging and Alzheimer's disease , 2001, Progress in Neurobiology.

[45]  J. Grunwald,et al.  Changes in Choriocapillaris and Retinal Pigment Epithelium ( RPE ) in Age-Related Macular Degeneration , 1999 .

[46]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[47]  G. Lutty,et al.  Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. , 1998, Archives of ophthalmology.

[48]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  A. Hudetz,et al.  Blood Flow in the Cerebral Capillary Network: A Review Emphasizing Observations with Intravital Microscopy , 1997, Microcirculation.

[50]  R W Flower,et al.  Variability in choriocapillaris blood flow distribution. , 1995, Investigative ophthalmology & visual science.

[51]  S. Asrani,et al.  Noninvasive visualization of the choriocapillaris and its dynamic filling. , 1994, Investigative ophthalmology & visual science.

[52]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[53]  J. Jonas,et al.  Direct clinico-histological correlation of parapapillary chorioretinal atrophy. , 1993, The British journal of ophthalmology.

[54]  P. Valensi,et al.  Erythrocyte deformability in diabetes and erythrocyte membrane lipid composition. , 1990, Metabolism: clinical and experimental.

[55]  J M Olver,et al.  Functional anatomy of the choroidal circulation: Methyl methacrylate casting of human choroid , 1990, Eye.

[56]  M. Kohno,et al.  Effect of salt-loading on erythrocyte deformability in spontaneously hypertensive and Wistar-Kyoto rats. , 1989, Life sciences.

[57]  A. Fryczkowski,et al.  Scanning electron microscopy of human ocular vascular casts: the submacular choriocapillaris. , 1988, Acta anatomica.

[58]  M. Tso,et al.  The architecture of the choriocapillaris at the posterior pole. , 1976, American journal of ophthalmology.

[59]  A. Alm,et al.  Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. , 1973, Experimental eye research.

[60]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .