Smooth approximation and rendering of large scattered data sets

Presents an efficient method to automatically compute a smooth approximation of large functional scattered data sets given over arbitrarily shaped planar domains. Our approach is based on the construction of a C/sup 1/-continuous bivariate cubic spline and our method offers optimal approximation order. Both local variation and nonuniform distribution of the data are taken into account by using local polynomial least squares approximations of varying degree. Since we only need to solve small linear systems and no triangulation of the scattered data points is required, the overall complexity of the algorithm is linear in the total number of points. Numerical examples dealing with several real-world scattered data sets with up to millions of points demonstrate the efficiency of our method. The resulting spline surface is of high visual quality and can be efficiently evaluated for rendering and modeling. In our implementation we achieve real-time frame rates for typical fly-through sequences and interactive frame rates for recomputing and rendering a locally modified spline surface.

[1]  Frank Zeilfelder,et al.  Local Lagrange interpolation by bivariate C 1 cubic splines , 2001 .

[2]  E. Arge,et al.  Approximation of scattered data using smooth grid functions , 1995 .

[3]  Nicholas M. Patrikalakis,et al.  Scattered data fitting with simplex splines in two and three dimensional spaces , 1997, The Visual Computer.

[4]  W. Dahmen,et al.  Scattered data interpolation by bivariate C1-piecewise quadratic functions , 1990 .

[5]  D. A. Southard Piecewise planar surface models from sampled data , 1991 .

[6]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[7]  Jie Li,et al.  Adaptive hierarchical b-spline surface approximation of large-scale scattered data , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[8]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[9]  Paolo Cignoni,et al.  Representation and visualization of terrain surfaces at variable resolution , 1997, The Visual Computer.

[10]  Hans-Peter Seidel,et al.  Fitting Triangular B‐Splines to Functional Scattered Data , 1996, Comput. Graph. Forum.

[11]  Hans Hagen,et al.  Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..

[12]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[13]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[14]  Michel Gangnet,et al.  Shaded Display of Digital Maps , 1984, IEEE Computer Graphics and Applications.

[15]  P. Lancaster Curve and surface fitting , 1986 .

[16]  Daniel Cohen-Or,et al.  Photo‐Realistic Imaging of Digital Terrains , 1993, Comput. Graph. Forum.

[17]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[18]  Yeong-Gil Shin,et al.  A Terrain Rendering Method Using Vertical Ray Coherence , 1997, Comput. Animat. Virtual Worlds.

[19]  Pia R. Pfluger,et al.  Smooth interpolation to scattered data by bivariate piecewise polynomials of odd degree , 1990, Comput. Aided Geom. Des..

[20]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[21]  Stephen A. Szygenda,et al.  Multiresolution BSP Trees Applied to Terrain, Transparency, and General Objects , 1997, Graphics Interface.

[22]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[23]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[24]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[25]  Suresh K. Lodha,et al.  Scattered Data Techniques for Surfaces , 1997, Scientific Visualization Conference (dagstuhl '97).

[26]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[27]  Bernd Hamann,et al.  Reconstruction of B-spline surfaces from scattered data points , 2000, Proceedings Computer Graphics International 2000.

[28]  Charles K. Chui,et al.  2. Box Splines and Multivariate Truncated Powers , 1988 .

[29]  Reinhard Klein,et al.  Incremental view-dependent multiresolution triangulation of terrain , 1998 .

[30]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[31]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[32]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[33]  Daniel Cohen-Or,et al.  Visibility and Dead‐Zones in Digital Terrain Maps , 1995, Comput. Graph. Forum.

[34]  Robert Schaback,et al.  Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..

[35]  A. James Stewart Hierarchical Visibility in Terrains , 1997, Rendering Techniques.

[36]  Frank Zeilfelder,et al.  Local Lagrange Interpolation by Cubic Splines on a Class of Triangulations , 2001 .

[37]  Frank Zeilfelder,et al.  Scattered Data Fitting with Bivariate Splines , 2002, Tutorials on Multiresolution in Geometric Modelling.

[38]  Francis J. M. Schmitt,et al.  An adaptive subdivision method for surface-fitting from sampled data , 1986, SIGGRAPH.

[39]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[40]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[41]  Morten Daehlen,et al.  Modelling Non-Rectangular Patches using Box Splines , 1988, IMA Conference on the Mathematics of Surfaces.

[42]  Hong Qin,et al.  D-NURBS: A Physics-Based Framework for Geometric Design , 1996, IEEE Trans. Vis. Comput. Graph..

[43]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[44]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[45]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.