Modal definability of first-order formulas with free variables and query answering

We present an algorithmically efficient criterion of modal definability for first-order existential conjunctive formulas with several free variables. Then we apply it to establish modal definability of some family of first-order ∀∃-formulas. Finally, we use our definability results to show that, in any expressive description logic, the problem of answering modally definable conjunctive queries is polynomially reducible to the problem of knowledge base consistency.

[1]  Carsten Lutz,et al.  The Complexity of Conjunctive Query Answering in Expressive Description Logics , 2008, IJCAR.

[2]  Andrea Schaerf Reasoning with Individuals in Concept Languages , 1993, AI*IA.

[3]  Valentin Goranko,et al.  Nicholas Rescher,; Patrick Blackburn, Maarten de Rijke and Yde Venema, Cambridge Tracts in Theoretical Computer Science Vol. 53 , 2004 .

[4]  Georg Gottlob,et al.  Query Answering in the Description Logic Horn- , 2008, JELIA.

[5]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[6]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[7]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[8]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[9]  S. Kikot Axiomatization of modal logic squares with distinguished diagonal , 2010 .

[10]  Ian Horrocks,et al.  A Description Logic Primer , 2012, ArXiv.

[11]  Barbara Dunin-Keplicz,et al.  Teamwork in Multi-Agent Systems - A Formal Approach , 2010, Wiley series in agent technology.

[12]  Stephan Tobies,et al.  Complexity results and practical algorithms for logics in knowledge representation , 2001, ArXiv.

[13]  Carsten Lutz,et al.  The Combined Approach to Query Answering in DL-Lite , 2010, KR.

[14]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[15]  George Edward Hughes,et al.  Every world can see a reflexive world , 1990, Stud Logica.

[16]  K. Johnson An Update. , 1984, Journal of food protection.

[17]  Evgeny Zolin Modal Logic Applied to Query Answering and the Case for Variable Modalities , 2007, Description Logics.

[18]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[19]  Diego Calvanese,et al.  Characterizing Data Complexity for Conjunctive Query Answering in Expressive Description Logics , 2006, AAAI.

[20]  Boris Motik,et al.  A Comparison of Query Rewriting Techniques for DL-lite , 2009, Description Logics.

[21]  Stanislav Kikot,et al.  Semantic Characterization of Kracht Formulas , 2010, Advances in Modal Logic.

[22]  Carsten Lutz,et al.  Conjunctive Query Answering in the Description Logic EL Using a Relational Database System , 2009, IJCAI.

[23]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[24]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[25]  Ágnes Kurucz,et al.  On axiomatising products of Kripke frames , 2000, Journal of Symbolic Logic.

[26]  Yevgeny Kazakov,et al.  Status QIO: An Update , 2011, Description Logics.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[29]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[30]  Stanislav Kikot,et al.  An extension of Kracht's theorem to generalized Sahlqvist formulas , 2009, J. Appl. Non Class. Logics.

[31]  Marcus Kracht,et al.  How Completeness and Correspondence Theory Got Married , 1993 .

[32]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[33]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[34]  Ágnes Kurucz,et al.  On axiomatising products of Kripke frames, part II , 2008, Advances in Modal Logic.

[35]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[36]  Alexander V. Chagrov,et al.  The Truth About Algorithmic Problems in Correspondence Theory , 2006, Advances in Modal Logic.

[37]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[38]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[39]  Catriel Beeri,et al.  The Implication Problem for Data Dependencies , 1981, ICALP.

[40]  Sebastian Rudolph,et al.  Status QIO: Conjunctive Query Entailment Is Decidable , 2010, KR.

[41]  Evgeny Zolin Answering Based on Modal Correspondence Theory , 2005 .

[42]  G. Gottlob,et al.  Query Answering in the Description Logic Horn-SHIQ ⋆ , 2008 .

[43]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..