Search for inelastic dark matter with the CDMS II experiment

Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events, the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10–100 keV.

[1]  R. Wechsler,et al.  Dark matter at the end of the Galaxy , 2010, 1010.4300.

[2]  P. Gondolo,et al.  Channeling in direct dark matter detection I: channeling fraction in NaI (Tl) crystals , 2010, 1006.3110.

[3]  E Aprile,et al.  First dark matter results from the XENON100 experiment. , 2010, Physical review letters.

[4]  A. J. Hughes,et al.  Limits on inelastic dark matter from ZEPLIN-III , 2010, 1003.5626.

[5]  P. Belli,et al.  New results from DAMA/LIBRA , 2010, 1002.1028.

[6]  J. Stadel,et al.  Dark matter direct detection with non-Maxwellian velocity structure , 2009, 0912.2358.

[7]  J. Cooley Results from the CDMS II experiment , 2009, 0912.1601.

[8]  C. Winant,et al.  Constraints on inelastic dark matter from XENON10 , 2009, 0910.3698.

[9]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[10]  R. W. Ogburn,et al.  Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. , 2008, Physical review letters.

[11]  M. McCullough,et al.  Inelastic dark matter, non-standard halos and the DAMA/LIBRA results , 2008, 0812.1931.

[12]  A. J. Hughes,et al.  Results from the first science run of the ZEPLIN-III dark matter search experiment , 2008, 0812.1150.

[13]  K. Freese,et al.  Compatibility of DAMA/LIBRA dark matter detection with other searches , 2008, 0808.3607.

[14]  C. Winant,et al.  Limits on spin-dependent WIMP-nucleon cross sections from the XENON10 experiment. , 2008, Physical review letters.

[15]  Univ. Jing Gangshan,et al.  First results from DAMA/LIBRA and the combined results with DAMA/NaI , 2008, 0804.2741.

[16]  M. Szydagis,et al.  Spin-Dependent WIMP Limits from a Bubble Chamber , 2008, Science.

[17]  Yehui Zhang,et al.  Possible implications of the channeling effect in NaI(Tl) crystals , 2007, 0710.0288.

[18]  J. Zhu,et al.  Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors , 2007, 0704.0423.

[19]  F. Cerutti,et al.  The FLUKA code: Description and benchmarking , 2007 .

[20]  B. Gibson,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[21]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[22]  R. W. Ogburn,et al.  Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory , 2005 .

[23]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[24]  S. Yellin Finding an Upper Limit in the Presence of Unknown Background , 2002, physics/0203002.

[25]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[26]  P. Belli,et al.  Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis , 2000 .

[27]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[28]  Betty A. Young,et al.  A QUASIPARTICLE-TRAP-ASSISTED TRANSITION-EDGE SENSOR FOR PHONON-MEDIATED PARTICLE DETECTION , 1995 .

[29]  M. Kamionkowski,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9506380.

[30]  P. Luke Voltage‐assisted calorimetric ionization detector , 1988 .

[31]  Spergel,et al.  Detecting cold dark-matter candidates. , 1986, Physical review. D, Particles and fields.

[32]  Goodman,et al.  Detectability of certain dark-matter candidates. , 1985, Physical review. D, Particles and fields.

[33]  S. Weinberg Does Gravitation Resolve the Ambiguity among Supersymmetric Vacua , 1982 .

[34]  S. Weinberg,et al.  Cosmological lower bound on heavy-neutrino masses , 1977 .

[35]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[36]  M. Snir,et al.  Report No , 2005 .

[37]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .