Review of weather impact on outdoor terahertz wireless communication links

Abstract As the demand for higher wireless data rates continues to increase, there has been more interest in extending the carrier frequency of wireless links from the millimeter wave range into the terahertz (THz) range. For long distance wireless communications, THz links can suffer significant signal loss due to atmospheric weather effects. Obviously, for evaluating wireless system link budgets, it will be important to estimate the weather impact on high capacity data links and compare the performance degradation of THz links to that of the competing approach of free-space optical wireless. This paper reviews the impact of weather on THz wireless links and emphasizes THz attenuation and channel impairments caused by atmospheric gases (in particular water vapor), airborne particulates (such as dust, fog, clouds, and rain), refractive index inhomogeneities which are driven by air turbulence, and their associated scintillations.

[1]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[2]  L. Andrews Field guide to atmospheric optics , 2004 .

[3]  Olivier Bouchet Wireless optical telecommunications , 2013 .

[4]  D. Grischkowsky,et al.  Time domain measurement of the THz refractivity of water vapor. , 2012, Optics express.

[5]  Jose Manuel Riera,et al.  Atmospheric Attenuation in Wireless Communication Systems at Millimeter and THz Frequencies [Wireless Corner] , 2015, IEEE Antennas and Propagation Magazine.

[6]  Jianjun Ma,et al.  Experimental Comparison of Terahertz and Infrared Signaling in Controlled Atmospheric Turbulence , 2015 .

[7]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[8]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[9]  V. N. KELKAR,et al.  Size Distribution of Raindrops , 1961, Nature.

[10]  Mahboubeh Mandehgar,et al.  THz-TDS Characterization of the Digital Communication Channels of the Atmosphere and the Enabled Applications , 2015 .

[11]  Mahboubeh Mandehgar,et al.  Broadband THz Signals Propagate Through Dense Fog , 2015, IEEE Photonics Technology Letters.

[12]  J. Federici Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging , 2012, Journal of Infrared, Millimeter, and Terahertz Waves.

[13]  Sebastian Priebe,et al.  Towards THz Communications - Status in Research, Standardization and Regulation , 2014 .

[14]  J. C. Leader Laser beam propagation in the atmosphere , 1983 .

[15]  P. A. Watson,et al.  Atmospheric Modelling and Millimetre Wave Propagation , 1994 .

[16]  P. Siegel Terahertz Technology , 2001 .

[17]  Roger L. Freeman,et al.  Radio System Design for Telecommunications , 1987 .

[18]  Thomas Schneider,et al.  Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges , 2015 .

[19]  H. Vasseur,et al.  Inference of fog characteristics from attenuation measurements at millimeter and optical wavelengths , 1996 .

[20]  N. Kukutsu,et al.  Effect of Rain Attenuation for a 10-Gb/s 120-GHz-Band Millimeter-Wave Wireless Link , 2009, IEEE Transactions on Microwave Theory and Techniques.

[21]  Peter V. Hobbs,et al.  Particle Emissions From a Large Kraft Paper Mill and Their Effects on the Microstructure of Warm Clouds , 1974 .

[22]  Daniel R. Grischkowsky,et al.  Long-Path THz-TDS Atmospheric Measurements Between Buildings , 2015, IEEE Transactions on Terahertz Science and Technology.

[23]  Hengkai Zhao,et al.  Scintillation of THz transmission by atmospheric turbulence near the ground , 2012, 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI).

[24]  Matsuo Sekine,et al.  Rain Attenuation 0f Centimeter, Millimeter and Submillimeter Radio Waves , 1982, 1982 12th European Microwave Conference.

[25]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[26]  C. M. Mann Towards Terahertz Communications Systems , 2001 .

[27]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[28]  Jianjun Ma,et al.  Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain , 2015 .

[29]  Kamal Sarabandi,et al.  Microwave Radar and Radiometric Remote Sensing , 2013 .

[30]  Thomas Schneider,et al.  Link Budget Analysis for Terahertz Fixed Wireless Links , 2012, IEEE Transactions on Terahertz Science and Technology.

[31]  Hans J. Liebe The atmospheric water vapor continuum below 300 GHz , 1984 .

[32]  Mohsen Kavehrad,et al.  Channel modeling of light signals propagating through a battlefield environment: analysis of channel spatial, angular, and temporal dispersion. , 2007, Applied optics.

[33]  Jianjun Ma,et al.  Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain , 2015 .

[34]  Hans J. Liebe,et al.  The atmospheric water vapor continuum below 300 GHz , 1983, 1983 Eighth International Conference on Infrared and Millimeter Waves.

[35]  D. Tanner,et al.  Effects of Scattering on THz Spectra of Granular Solids , 2007 .

[36]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[37]  Carlton W. Ulbrich,et al.  Assessment of the contribution of differential polarization to improved rainfall measurements , 1984 .

[38]  Toshihisa Kamei,et al.  Measurement of Rain Attenuation in Terahertz Wave Range , 2011, Wirel. Eng. Technol..

[39]  R. A. Bohlander,et al.  Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements , 1988 .

[40]  Z. Ghassemlooy,et al.  Enhancing the Atmospheric Visibility and Fog Attenuation Using a Controlled FSO Channel , 2013, IEEE Photonics Technology Letters.

[41]  Lothar Moeller,et al.  Experimental comparison of performance degradation from terahertz and infrared wireless links in fog. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  Lothar Moeller,et al.  Experimental comparison of terahertz and infrared data signal attenuation in dust clouds. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  Otakar Wilfert,et al.  Calculation and Comparison of Turbulence Attenuation by Different Methods , 2010 .

[44]  Wan-xia Huang,et al.  Attenuation of terahertz transmission through rain , 2012 .

[45]  J. W. Fitzgerald,et al.  Changes in Cloud Nucleus Concentration and Cloud Droplet Size Distribution Associated with Pollution from St. Louis , 1973 .

[46]  Guillermo Carpintero,et al.  Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research , 2015, IEICE Trans. Electron..

[47]  T. Manabe,et al.  Millimeter-wave attenuation and delay rates due to fog/cloud conditions , 1989 .

[48]  J. Federici,et al.  2.5 Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source , 2011 .

[49]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[50]  N. Kukutsu,et al.  10-Gbit/s MMIC wireless link exceeding 800 meters , 2008, 2008 IEEE Radio and Wireless Symposium.

[51]  Hengkai Zhao,et al.  The Influence of Turbulence Scintillation on The BER of THz Wireless Communication , 2013 .

[52]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..

[53]  Peter V. Hobbs,et al.  Measurements of Cloud Condensation Nuclei and Cloud Droplet Size Distributions in the Vicinity of Forest Fires , 1974 .

[54]  Mahboubeh Mandehgar,et al.  Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory. , 2014, Optics express.

[55]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.