Characterization and Correction of Multilook Effects on Eigendecomposition Parameters in PolSAR Images

The eigendecompostion of the coherency matrix and the related parameters, i.e., entropy H, α, and anisotropy A, are effective and popular tools for the analysis and quantitative estimation of the physical parameters of polarimetric synthetic aperture radar images. However, the speckle noise constitutes the main obstacle that hinders these goals and should be filtered. In this paper, based on studies obtained from extensive simulated data sets, we tried to determine how this noise is transmitted to sample eigendecomposition parameters. The dependence between means and variances of sample parameters leads to building their speckle models and to the definition of a bias elimination procedure. We found that sample eigenvalues were affected by multiplicative noise, whereas sample entropy and sample anisotropy were affected by a mixture of multiplicative and additive noise sources. In addition to its versatility, independence to knowledge of the equivalent number of looks and high ability to bias compensation, the proposed bias suppression technique reduced the variance of noise. Simulated and real data as well as the existing theories are used for validation in this paper.

[1]  J. Goodman Some fundamental properties of speckle , 1976 .

[2]  Luca Pipia,et al.  Generation of Pol-SAR and POL-in-SAR Data for Homogeneous Distributed Targets Simulation , 2005 .

[3]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[5]  Irena Hajnsek,et al.  Polarimetric Speckle Noise Effects in Quantitative Physical parameters Retrieval , 2004 .

[6]  Taoufik Aguili,et al.  Bias correction of multilook effect on anisotropy in polarimetric SAR decomposition , 2014, 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP).

[7]  Carlos López-Martínez,et al.  Evaluation and bias removal of multi-look effect on entropy/alpha/anisotropy , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[9]  Leslie M. Novak,et al.  Optimal speckle reduction in polarimetric SAR imagery , 1990 .

[10]  Jakob J. van Zyl,et al.  Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Carlos López-Martínez,et al.  Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[15]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[17]  Goze B. Bénié,et al.  Application of bootstrap techniques for the estimation of Target Decomposition parameters in RADAR polarimetry , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  M. E. Yahia,et al.  Unsupervised classification of polarimetric SAR images using neural networks , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[21]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[23]  Yoshio Yamaguchi Four-component scattering power decomposition using coherency matrix , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Thomas L. Ainsworth,et al.  Statistical evaluation and bias removal of multi-look effect on Entropy/ alpha/Anisotropy in polarimetric target decomposition , 2008 .

[25]  Lenan Wu,et al.  A New Classifier for Polarimetric SAR Images , 2009 .

[26]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  Carlos López-Martínez,et al.  An evaluation of PolSAR speckle filters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Carlos López-Martínez,et al.  Perturbation Analysis of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Z. Belhadj,et al.  Polarimetric SAR Denoising Using Adaptive Prediction Technique , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[30]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[31]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Carlos López-Martínez,et al.  Monte Carlo Evaluation of Multi-Look Effect on Entropy/Alpha /Anisotropy Parameters of Polarimetric Target Decomposition , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[33]  C. Lopez-Martinez,et al.  A framework for the analysis of speckle noise effects in multidimensional SAR imagery , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[34]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  Shuiping Gou,et al.  Eigenvalue Analysis-Based Approach for POL-SAR Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Gabriel Vasile,et al.  Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Carlos López-Martínez,et al.  The polarimetric ratio filter applied to polinsar images , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[38]  Thomas L. Ainsworth,et al.  A simulation study of topographic effects on polsar classification of forests and crops , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.