Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here the first differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50\% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be also significantly smaller. An event shape engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. A $v_{2}$-independent signal, possibly indicating a $m_{\rm inv}$-integrated CME contribution, is extracted to be $\Delta\gamma_{\rm signal}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$=(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$. This presents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result at $95\%$ confidence level.

A. S. Nunes | G. S. Averichev | Y. Wang | J. Thomas | T. Liu | S. Oh | R. Pak | Z. Zhang | L. Pinsky | J. Sandweiss | S. Sato | L. Adamczyk | S. Fazio | P. Federič | A. Gibson | J. Jia | S. Kabana | M. Przybycien | Z. Yang | G. Wang | Z. Zhang | J. Singh | X. Liu | H. Spinka | D. Isenhower | S. Radhakrishnan | Z. Chen | I. Chakaberia | F. Geurts | S. Salur | O. Evdokimov | A. Chatterjee | J. Roberts | Z. Ye | K. Yip | J. Chen | B. Pawlik | D. Underwood | M. Shao | B. Stringfellow | Y. Hu | J. Zhao | Y. Yang | J. Lauret | H. Ritter | Y. Liu | I. Deppner | N. Herrmann | Y. Leung | Z. Ahammed | R. Bellwied | L. Bland | A. Brandin | H. Caines | D. Cebra | M. Cherney | W. Christie | H. Crawford | A. Derevschikov | L. Didenko | J. Dunlop | J. Engelage | G. Eppley | E. Finch | Y. Fisyak | J. Harris | T. Humanic | G. Igo | W. Jacobs | E. Judd | D. Keane | A. Kisiel | P. Kravtsov | K. Krueger | J. Landgraf | A. Lebedev | R. Lednický | M. Lisa | T. Ljubičić | W. Llope | R. Longacre | R. Majka | S. Margetis | H. Matis | N. Minaev | L. Nogach | G. Odyniec | A. Ogawa | V. Okorokov | Y. Panebratsev | J. Pluta | J. Porter | R. Ray | J. Romero | N. Schmitz | J. Seger | P. Seyboth | E. Shahaliev | N. Smirnov | B. Srivastava | M. Strikhanov | A. Suaide | M. Šumbera | A. Tang | S. Trentalange | M. Tokarev | O. Tsai | T. Ullrich | G. Buren | A. Vasiliev | S. Voloshin | F. Wang | G. Westfall | H. Wieman | S. Wissink | R. Witt | N. Xu | Z. Xu | P. Shanmuganathan | Y. Liang | W. Xie | C. Markert | X. Chen | Y. Sun | B. Mohanty | Z. Wang | J. Cheng | X. Zhu | J. Webb | H. Qiu | R. K. Elayavalli | N. Sahoo | M. Nagy | D. Anderson | Y. Feng | T. Huang | M. Kelsey | P. Huo | C. Zhou | Z. Zhu | S. Choudhury | J. Adams | A. Behera | X. Chu | W. Schmidke | A. Bhasin | J. Bielčík | J. Bielčíková | I. Kisel | Z. Moravcova | H. Pei | Q. Shou | A. Timmins | H. Zbroszczyk | D. Kikola | I. Vassiliev | M. Aggarwal | M. Mondal | D. Tlustý | X. Zhang | Y. Li | J. Putschke | R. Ma | C. Jena | P. Tribedy | S. Esumi | S. Yang | J. Mazer | K. Nayak | R. Reed | S. Singha | M. Zyzak | A. Francisco | S. C. J. Adam | J. K. Adkins | G. Agakishiev | I. Alekseev | A. Aparin | E. Aschenauer | M. U. Ashraf | F. Atetalla | A. Attri | V. Bairathi | K. Barish | I. Bordyuzhin | J. Brandenburg | J. Butterworth | P. Chaloupka | B. Chan | F. Chang | Z. Chang | N. Chankova-Bunzarova | D. Chen | M. Chevalier | M. Csan'ad | M. Daugherity | T. Dedovich | X. Dong | J. Drachenberg | T. Edmonds | N. Elsey | R. Esha | O. Eyser | R. Fatémi | J. Fedorišin | C. Feng | P. Filip | L. Fulek | C. Gagliardi | T. Galatyuk | K. Gopal | D. Grosnick | W. Guryn | A. Hamad | Ahmed M. Hamed | W. He | X. He | S. Heppelmann | E. Hoffman | L. Holub | Y. Hong | S. Horvat | X. Huang | A. Jentsch | J. Y. | K. Jiang | S. Jowzaee | X. Ju | M. L. Kabir | S. Kagamaster | D. Kalinkin | K. Kang | D. Kapukchyan | K. Kauder | H. Ke | A. Kechechyan | Y. Khyzhniak | B. Kimelman | D. Kincses | T. Kinghorn | A. Kiselev | M. Kocan | L. Kochenda | L. Kosarzewski | L. Kramárik | N. Mudiyanselage | Lokesh Kumar | J. Kwasizur | R. Lacey | S. Lan | J. Lee | C. Li | W. Li | X. Li | R. Licenik | T. Lin | Y. Lin | F. Liu | H. Liu | P. Liu | Z. Liu | N. Lukow | S. Luo | G. Ma | L. Ma | Y. Ma | N. Magdy | S. Mioduszewski | I. Mooney | D. Morozov | J. Nam | M. Nasim | D. Neff | D. Nemes | M. Nie | G. Nigmatkulov | T. Niida | T. Nonaka | B. Page | A. Pandav | D. Pawłowska | C. Perkins | R. L. Pint'er | M. Posik | N. Pruthi | A. Quintero | S. Ramachandran | O. Rogachevskiy | L. Ruan | J. Rusnak | H. Sako | B. Schweid | F. Seck | M. Sergeeva | R. Seto | N. Shah | F. Shen | W. Shen | S. Shi | E. Sichtermann | R. Sikora | M. Simko | W. Solyst | P. Sorensen | T. Stanislaus | M. Stefaniak | D. Stewart | B. Summa | X. Sun | B. Surrow | D. Svirida | P. Szymanski | Z. Tang | A. Taranenko | T. Tarnowsky | C. Tomkiel | R. Tribble | S. Tripathy | Z. Tu | I. Upsal | J. Vanek | F. Videbaek | S. Vokál | J. Wang | P. Wang | P. Weidenkaff | L. Wen | Y. Wu | Z. Xiao | G. Xie | H. Xu | Y. Xu | C. Yang | Q. Yang | L. Yi | W. Zha | S. Zhang | Y. Zhang | C. Zhong | M. Zurek | D. Mallick | A. Ewigleben | S. Harabasz | S. He | S. Huang | M. Calder'ondelaBarcaS'anchez | H. Huang | Q. Xu | D. Zhang | J. Nelson | X. Luo | C. Kim | D. Kikoła | J. Bielcik | T. Liu | X. Luo | C. Yang | T. Huang | X. Luo | T. Huang | P. Federic

[1]  A. S. Nunes,et al.  Search for the Chiral Magnetic Effect via Charge-Dependent Azimuthal Correlations Relative to Spectator and Participant Planes in Au+Au Collisions at sqrt[s_{NN}]=200  GeV. , 2021, Physical review letters.

[2]  A. S. Nunes,et al.  Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC , 2021, 2109.00131.

[3]  Wei Li,et al.  Chiral Magnetic Effects in Nuclear Collisions , 2020, 2002.10397.

[4]  J. Zhao,et al.  hijing can describe the anisotropy-scaled charge-dependent correlations at the BNL Relativistic Heavy Ion Collider , 2019, 1912.00299.

[5]  S. Feng,et al.  A systematical study of the chiral magnetic effects at the RHIC and LHC energies , 2019, Chinese Physics C.

[6]  A. Tang Probe chiral magnetic effect with signed balance function , 2019, Chinese Physics C.

[7]  G. S. Averichev,et al.  Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC , 2019, Physics Letters B.

[8]  Jie-Cheng Zhao,et al.  Experimental searches for the chiral magnetic effect in heavy-ion collisions , 2019, Progress in Particle and Nuclear Physics.

[9]  Yongjia Wang,et al.  Effect of internal magnetic field on collective flow in heavy ion collisions at intermediate energies , 2019, Physical Review C.

[10]  Jie-Cheng Zhao,et al.  A novel invariant mass method to isolate resonance backgrounds from the chiral magnetic effect , 2018, Nuclear Physics A.

[11]  Jie-Cheng Zhao,et al.  Isolating the chiral magnetic effect from backgrounds by pair invariant mass , 2017, The European Physical Journal C.

[12]  Z. Tu,et al.  Status of the Chiral Magnetic Effect Search in Relativistic Heavy-Ion Collisions , 2018, 1807.05083.

[13]  V. M. Ghete,et al.  Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider , 2018 .

[14]  J. G. Contreras,et al.  Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at sNN=2.76 TeV , 2018 .

[15]  Zi-Wei Lin,et al.  Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision , 2017, Chinese Physics C.

[16]  S. Shi,et al.  Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics , 2017, Annals of Physics.

[17]  S. Voloshin,et al.  Status of the chiral magnetic effect and collisions of isobars , 2017 .

[18]  V. M. Ghete,et al.  Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect. , 2016, Physical review letters.

[19]  L. Wen,et al.  Event-shape-engineering study of charge separation in heavy-ion collisions , 2016, 1608.03205.

[20]  G. S. Averichev,et al.  Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC. , 2014, Physical review letters.

[21]  K. Tuchin Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions , 2013, 1305.5806.

[22]  Jr.,et al.  Elliptic flow of identified hadrons in Au+Au collisions at √s NN=7.7-62.4 GeV , 2013, 1301.2348.

[23]  J. G. Contreras,et al.  Charge separation relative to the reaction plane in Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV. , 2013, Physical review letters.

[24]  Nasim,et al.  Inclusive charged hadron elliptic flow in Au + Au collisions at √sNN=7.7–39 GeV , 2012 .

[25]  A. Bzdak,et al.  Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions , 2011, 1111.1949.

[26]  W. Llope Multigap RPCs in the STAR experiment at RHIC , 2012 .

[27]  A. Bzdak,et al.  Azimuthal correlations from transverse momentum conservation and possible local parity violation , 2010, 1008.4919.

[28]  S. Gavin,et al.  of Momentum Conservation and Flow on Angular Correlations at RHIC , 2010, 1011.6053.

[29]  V. Toneev,et al.  Energy and system-size dependence of the Chiral Magnetic Effect , 2010 .

[30]  A. Schafer,et al.  Charge Fluctuations from the Chiral Magnetic Effect in Nuclear Collisions , 2010, 1009.1053.

[31]  M. Asakawa,et al.  Electric charge separation in strong transient magnetic fields , 2010, 1003.2436.

[32]  E. al.,et al.  Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions , 2009, 0909.1717.

[33]  B. Müller Looking for parity violation in heavy-ion collisions , 2009 .

[34]  G. S. Averichev,et al.  Azimuthal charged-particle correlations and possible local strong parity violation. , 2009, Physical review letters.

[35]  D. Kharzeev,et al.  Chiral Magnetic conductivity , 2009, 0907.5007.

[36]  L. Mclerran,et al.  The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation” , 2007, 0711.0950.

[37]  C. Henderson,et al.  System size, energy, pseudorapidity, and centrality dependence of elliptic flow. , 2006, Physical review letters.

[38]  D. Kharzeev Parity violation in hot QCD: Why it can happen, and how to look for it , 2004, hep-ph/0406125.

[39]  V. V. Belaga,et al.  STAR detector overview , 2003 .

[40]  J. Thomas,et al.  The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC , 2003, nucl-ex/0301015.

[41]  N. Borghini,et al.  Analysis of directed flow from elliptic flow , 2002, nucl-th/0204017.

[42]  D. Kharzeev,et al.  Pionic measures of parity and CP violation in high-energy nuclear collisions , 1999, hep-ph/9906401.

[43]  K. J. Foley,et al.  The STAR Time Projection Chamber , 1999 .

[44]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[45]  T. D. Lee,et al.  Vacuum Stability and Vacuum Excitation in a Spin 0 Field Theory , 1974 .