S-Matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV lagrangian

We demonstrate that the canonical change of variables that yields the MHV lagrangian, also provides contributions to scattering amplitudes that evade the equivalence theorem. This 'ET evasion' in particular provides the tree-level (-++) amplitude, which is non-vanishing off shell, or on shell with complex momenta or in (2,2) signature, and is missing from the MHV (\aka CSW) rules. At one loop there are ET-evading diagrammatic contributions to the amplitudes with all positive helicities. We supply the necessary regularisation in order to define these contributions (and quantum MHV methods in general) by starting from the light-cone Yang-Mills lagrangian in D dimensions and making a canonical change of variables for all D-2 transverse degrees of freedom of the gauge field. In this way, we obtain dimensionally regularised three- and four-point MHV amplitudes. Returning to the one-loop (++++) amplitude, we demonstrate that its quadruple cut coincides with the known result, and show how the original light-cone Yang-Mills contributions can in fact be algebraically recovered from the ET-evading contributions. We conclude that the canonical MHV lagrangian, supplemented with the extra terms brought to correlation functions by the non-linear field transformation, provide contributions which are just a rearrangement of those from light-cone Yang-Mills and thus coincide with them both on and off shell.

[1]  F. Wilczek,et al.  Quantum Field Theory , 1998, Compendium of Quantum Physics.

[2]  A. Brandhuber,et al.  One-loop MHV rules and pure Yang-Mills , 2007, 0704.0245.

[3]  R. Boels A quantization of twistor Yang-Mills theory through the background field method , 2007, hep-th/0703080.

[4]  R. Boels,et al.  From twistor actions to MHV diagrams , 2007, hep-th/0702035.

[5]  A. Brandhuber,et al.  Amplitudes in pure Yang-Mills and MHV Diagrams , 2006, hep-th/0612007.

[6]  L. Dixon,et al.  All One-loop Maximally Helicity Violating Gluonic Amplitudes in QCD , 2006, hep-ph/0607014.

[7]  L. Mason,et al.  Supersymmetric gauge theories in twistor space , 2006, hep-th/0604040.

[8]  Yu-tin Huang,et al.  MHV Lagrangian for N = 4 super Yang-Mills , 2006, hep-th/0611164.

[9]  Z. Xiao,et al.  The Rational Part of QCD Amplitude I: the General Formalism , 2006 .

[10]  Gang Yang,et al.  The rational parts of one-loop QCD amplitudes I: The general formalism , 2006, hep-ph/0607015.

[11]  T. Morris,et al.  Structure of the MHV-rules lagrangian , 2006, hep-th/0605121.

[12]  L. Mason,et al.  An ambitwistor Yang–Mills Lagrangian , 2006 .

[13]  L. Dixon,et al.  Bootstrapping one-loop QCD amplitudes with general helicities , 2006, hep-ph/0604195.

[14]  P. Mansfield The Lagrangian origin of MHV rules. , 2005, hep-th/0511264.

[15]  A. Brandhuber,et al.  From trees to loops and back , 2005, hep-th/0510253.

[16]  A. Gorsky,et al.  From Yang-Mills lagrangian to MHV diagrams , 2005, hep-th/0510111.

[17]  L. Dixon,et al.  Bootstrapping multiparton loop amplitudes in QCD , 2005, hep-ph/0507005.

[18]  Kasper Risager A direct proof of the CSW rules , 2005, hep-th/0508206.

[19]  C. Thorn,et al.  Scattering of glue by glue on the light-cone worldsheet: Helicity nonconserving amplitudes , 2005, hep-th/0507280.

[20]  Kasper Risager,et al.  One-loop NMHV amplitudes involving gluinos and scalars in Script N = 4 gauge theory , 2005, hep-th/0507170.

[21]  H. Ita,et al.  Recursive calculation of one-loop QCD integral coefficients , 2005, hep-ph/0507019.

[22]  F. Cachazo,et al.  Two-loop amplitudes of gluons and octa-cuts in Script N = 4 super Yang-Mills , 2005, hep-th/0506126.

[23]  A. Brandhuber,et al.  Loop amplitudes in pure Yang-Mills from generalised unitarity , 2005, hep-th/0506068.

[24]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[25]  R. Roiban,et al.  All split helicity tree-level gluon amplitudes , 2005, hep-th/0503198.

[26]  N. Bjerrum-Bohr,et al.  One-loop gluon scattering amplitudes in theories with N<4 supersymmetries , 2005, hep-th/0502028.

[27]  L. Dixon,et al.  On-shell recurrence relations for one-loop QCD amplitudes , 2005, hep-th/0501240.

[28]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.

[29]  F. Cachazo,et al.  New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.

[30]  L. Dixon,et al.  All next-to-maximally-helicity-violating one-loop gluon amplitudes in N = 4 super-Yang-Mills theory , 2004, hep-th/0412210.

[31]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[32]  A. Brandhuber,et al.  Non-supersymmetric loop amplitudes and MHV vertices , 2004, hep-th/0412108.

[33]  A. Brandhuber,et al.  A Twistor approach to one-loop amplitudes in N=1 supersymmetric Yang-Mills theory , 2004, hep-th/0410280.

[34]  M. Rozali,et al.  One-loop MHV amplitudes in supersymmetric gauge theories , 2004, hep-th/0410278.

[35]  F. Cachazo,et al.  Computing one-loop amplitudes from the holomorphic anomaly of unitarity cuts , 2004, hep-th/0410179.

[36]  A. Brandhuber,et al.  One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices , 2004, hep-th/0407214.

[37]  D. Kosower Next-to-maximal helicity violating amplitudes in gauge theory , 2004, hep-th/0406175.

[38]  Z. Bern,et al.  Twistor-space recursive formulation of gauge-theory amplitudes , 2004, hep-th/0406133.

[39]  F. Cachazo Holomorphic Anomaly Of Unitarity Cuts And One-Loop Gauge Theory Amplitudes , 2004, hep-th/0410077.

[40]  E. Witten,et al.  Gauge theory amplitudes in twistor space and holomorphic anomaly , 2004, hep-th/0409245.

[41]  V. Khoze,et al.  Non-MHV Tree Amplitudes in Gauge Theory , 2004, hep-th/0407027.

[42]  E. Witten,et al.  Twistor space structure of one-loop amplitudes in gauge theory , 2004, hep-th/0406177.

[43]  Chuan-Jie Zhu,et al.  MHV vertices and fermionic scattering amplitudes in gauge theory with quarks and gluinos , 2004, hep-th/0406146.

[44]  Chuan-Jie Zhu,et al.  MHV vertices and scattering amplitudes in gauge theory , 2004, hep-th/0406085.

[45]  V. Khoze,et al.  Tree Amplitudes in Gauge Theory as Scalar MHV Diagrams , 2004, hep-th/0404072.

[46]  Chuan-Jie Zhu The googly amplitudes in gauge theory , 2004, hep-th/0403115.

[47]  E. Witten,et al.  MHV vertices and tree amplitudes in gauge theory , 2004, hep-th/0403047.

[48]  E. Witten Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.

[49]  Chalmers,et al.  Self-dual sector of QCD amplitudes. , 1996, Physical review. D, Particles and fields.

[50]  L. Dixon Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.

[51]  A. Morgan,et al.  MASSIVE LOOP AMPLITUDES FROM UNITARITY , 1995, hep-ph/9511336.

[52]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[53]  L. Dixon,et al.  One-loop n-gluon amplitudes with maximal helicity violation via collinear limits. , 1993, Physical review letters.

[54]  Mahlon,et al.  Multigluon helicity amplitudes involving a quark loop. , 1993, Physical review. D, Particles and fields.

[55]  L. Dixon,et al.  New QCD Results from String Theory , 1993, hep-th/9311026.

[56]  L. Dixon,et al.  One-loop corrections to five-gluon amplitudes. , 1993, Physical review letters.

[57]  M. Mangano,et al.  The structure of gluon radiation in QCD , 1989 .

[58]  W. Giele,et al.  Multiple soft gluon radiation in parton processes , 1989 .

[59]  Taylor,et al.  Amplitude for n-gluon scattering. , 1986, Physical review letters.

[60]  G. Leibbrandt Light-cone gauge in Yang-Mills theory , 1984 .

[61]  佐藤 光,et al.  C. Itzykson and J. Zuber: Quantum Field Theory, McGraw-Hill, New York, 1980, 705ぺージ, 24×17cm, 18,870円. , 1981 .

[62]  M. Bergere,et al.  Equivalence theorem and Faddeev-Popov ghosts , 1976 .

[63]  R. Feynman Closed Loop and Tree Diagrams , 1972 .

[64]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[65]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.