1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers
暂无分享,去创建一个
A. Seeds | M. Tang | A. Seeds | M. Tang | G. Salamo | M. Benamara | Q. Jiang | V. Dorogan | Y. Mazur | J. Wu | H. Liu | Q. Jiang | S. Chen | J. Wu | V. G. Dorogan | M. Benamara | Y. I. Mazur | G. J. Salamo | H. Liu | S. Chen
[1] Lorenzo Pavesi,et al. Silicon Nanocrystals as an Enabling Material for Silicon Photonics , 2009, Proceedings of the IEEE.
[2] M. Yamaguchi,et al. Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .
[3] Alwyn J. Seeds,et al. Electrically pumped continuous-wave 1.3-.spl mu/m InAs/GaAs quantum dot lasers monolithically grown on Si substrates , 2014 .
[4] Alexey E. Zhukov,et al. GaAs-based long-wavelength lasers , 2000 .
[5] David J. Thomson,et al. Silicon optical modulators , 2010 .
[6] Y. Arakawa,et al. III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.
[7] P. Hirsch. Nucleation and Propagation of Misfit Dislocations in Strained Epitaxial Layer Systems , 1991 .
[8] Yoshio Itoh,et al. Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .
[9] M. S. Skolnick,et al. Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .
[10] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .
[11] Yasuhiko Arakawa,et al. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. , 2010, Optics express.
[12] Kristian M. Groom,et al. Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .
[13] Richard A. Hogg,et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .
[14] M. Hopkinson,et al. Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-$\mu$m p-Type Modulation-Doped Quantum-Dot Laser , 2006, IEEE Journal of Quantum Electronics.
[15] J. Michel,et al. High-performance Ge-on-Si photodetectors , 2010 .
[16] Richard A. Hogg,et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates , 2012 .
[17] Huiyun Liu,et al. III-V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates , 2013 .
[18] Hyundai Park,et al. 1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.
[19] Zetian Mi,et al. High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.
[20] D. Deppe,et al. 1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .
[21] Hon Ki Tsang,et al. Device engineering for silicon photonics , 2011 .
[22] X. Lv,et al. Improved Continuous-Wave Performance of Two-Section Quantum-Dot Superluminescent Diodes by Using Epi-Down Mounting Process , 2012, IEEE Photonics Technology Letters.
[23] M. Hopkinson,et al. High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents , 2005, IEEE Photonics Technology Letters.
[24] John E. Bowers,et al. MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon , 2014 .
[25] Qi Jiang,et al. InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates , 2013, IEEE Journal of Selected Topics in Quantum Electronics.
[26] M. Romagnoli,et al. An electrically pumped germanium laser. , 2012, Optics express.
[27] Aj Seeds,et al. 1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014 .
[28] John E. Bowers,et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .
[29] Rui Chen,et al. Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy , 2010 .
[30] Dennis G. Deppe,et al. 1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .
[31] Alwyn Seeds,et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.
[32] K. Groom,et al. Recombination and loss mechanisms in low-threshold InAs-GaAs 1.3-/spl mu/m quantum-dot lasers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.
[33] J. Leuthold,et al. Nonlinear silicon photonics , 2010 .
[34] Di Liang,et al. Recent progress in lasers on silicon , 2010 .
[35] K. Groom,et al. Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3 /spl mu/m quantum dot lasers , 2004 .
[36] Alexandros Georgakilas,et al. Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers , 1994 .
[37] J. Michel,et al. Ge-on-Si laser operating at room temperature. , 2010, Optics letters.
[38] Connie Chang-Hasnain,et al. Nanolasers Grown on Silicon , 2011, 1101.3305.
[39] Shinsuke Tanaka,et al. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.