1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers

We report on the operation of electrically pumped 1.3μm InAs QD laser directly grown on a Si substrate using InAlAs/GaAs dislocation filter layers with a threshold current density of 194A/cm2 and output power of ~80mW.

[1]  Lorenzo Pavesi,et al.  Silicon Nanocrystals as an Enabling Material for Silicon Photonics , 2009, Proceedings of the IEEE.

[2]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[3]  Alwyn J. Seeds,et al.  Electrically pumped continuous-wave 1.3-.spl mu/m InAs/GaAs quantum dot lasers monolithically grown on Si substrates , 2014 .

[4]  Alexey E. Zhukov,et al.  GaAs-based long-wavelength lasers , 2000 .

[5]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[6]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[7]  P. Hirsch Nucleation and Propagation of Misfit Dislocations in Strained Epitaxial Layer Systems , 1991 .

[8]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[9]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[10]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[11]  Yasuhiko Arakawa,et al.  Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. , 2010, Optics express.

[12]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[13]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[14]  M. Hopkinson,et al.  Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-$\mu$m p-Type Modulation-Doped Quantum-Dot Laser , 2006, IEEE Journal of Quantum Electronics.

[15]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[16]  Richard A. Hogg,et al.  The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates , 2012 .

[17]  Huiyun Liu,et al.  III-V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates , 2013 .

[18]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[19]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[20]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[21]  Hon Ki Tsang,et al.  Device engineering for silicon photonics , 2011 .

[22]  X. Lv,et al.  Improved Continuous-Wave Performance of Two-Section Quantum-Dot Superluminescent Diodes by Using Epi-Down Mounting Process , 2012, IEEE Photonics Technology Letters.

[23]  M. Hopkinson,et al.  High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents , 2005, IEEE Photonics Technology Letters.

[24]  John E. Bowers,et al.  MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon , 2014 .

[25]  Qi Jiang,et al.  InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[27]  Aj Seeds,et al.  1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014 .

[28]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[29]  Rui Chen,et al.  Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy , 2010 .

[30]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[31]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[32]  K. Groom,et al.  Recombination and loss mechanisms in low-threshold InAs-GaAs 1.3-/spl mu/m quantum-dot lasers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[34]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[35]  K. Groom,et al.  Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3 /spl mu/m quantum dot lasers , 2004 .

[36]  Alexandros Georgakilas,et al.  Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers , 1994 .

[37]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[38]  Connie Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[39]  Shinsuke Tanaka,et al.  High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.