Two Roads to Classicality

Mixing and decoherence are both manifestations of classicality within quantum theory, each of which admit a very general category-theoretic construction. We show under which conditions these two 'roads to classicality' coincide. This is indeed the case for (finite-dimensional) quantum theory, where each construction yields the category of C*-algebras and completely positive maps. We present counterexamples where the property fails which includes relational and modal theories. Finally, we provide a new interpretation for our category-theoretic generalisation of decoherence in terms of 'leaking information'.

[1]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[2]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[3]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[4]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[5]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[6]  O. Bratteli Inductive limits of finite dimensional C*-algebras , 1972 .

[7]  Benjamin Schumacher,et al.  Modal Quantum Theory , 2010, 1204.0701.

[8]  Giuseppe Longo,et al.  Categories, types and structures - an introduction to category theory for the working computer scientist , 1991, Foundations of computing.

[9]  Peter Selinger,et al.  Idempotents in Dagger Categories: (Extended Abstract) , 2008, QPL.

[10]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[11]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[12]  Aleks Kissinger,et al.  Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[13]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[14]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[15]  Bart Jacobs,et al.  An Introduction to Effectus Theory , 2015, ArXiv.

[16]  Jamie Vicary Higher Semantics of Quantum Protocols , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[17]  William K. Wootters,et al.  Limited Holism and Real-Vector-Space Quantum Theory , 2010, 1005.4870.

[18]  S. Lane Categories for the Working Mathematician , 1971 .

[19]  Henry Cohn Projective Geometry over 픽1 and the Gaussian Binomial Coefficients , 2004, Am. Math. Mon..

[20]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[21]  Bob Coecke,et al.  Terminality implies non-signalling , 2014, QPL.

[22]  Peter Flor,et al.  On groups of non-negative matrices , 1969 .

[23]  Francis Borceux,et al.  Cauchy completion in category theory , 1986 .

[24]  Jamie Vicary,et al.  Categorical Formulation of Quantum Algebras , 2008 .

[25]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[26]  Amar Hadzihasanovic,et al.  A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[27]  Jamie Vicary The Topology of Quantum Algorithms , 2012, 1209.3917.

[28]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[29]  Aleks Kissinger,et al.  Completely positive projections and biproducts , 2013, QPL.

[30]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[31]  Michael D. Westmoreland,et al.  Almost Quantum Theory , 2016 .

[32]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[33]  Chris Heunen,et al.  Axiomatizing complete positivity , 2015, ArXiv.

[34]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[35]  Aleks Kissinger,et al.  Categorical Quantum Mechanics I: Causal Quantum Processes , 2015, 1510.05468.

[36]  Bob Coecke,et al.  Leaks: Quantum, Classical, Intermediate and More , 2017, Entropy.

[37]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..