Nanoimprint lithography for solar cell texturisation

The highest efficiency silicon solar cells are fabricated using defined texturing schemes by applying etching masks. However, for an industrial production of solar cells the usage of photolithographic processes to pattern these etching masks is too consumptive. Especially for multicrystalline silicon, there is a huge difference in the quality of the texture realized in high efficiency laboratory scale and maskless industrial scale fabrication. In this work we are describing the topography of a desired texture for solar cell front surfaces. We are investigating UV-nanoimprint lithography (UV-NIL) as a potential technology to substitute photolithography and so to enable the benefits resulting of a defined texture in industrially feasible processes. Besides the reduced process complexity, UV-NIL offers new possibilities in terms of structure shape and resolution of the generated etching mask. As mastering technology for the stamps we need in the UV-NIL, interference lithography is used. The UV-NIL process is conducted using flexible UV-transparent stamps to allow a full wafer process. The following texturisation process is realized via crystal orientation independent plasma etching to tap the full potential of the presented process chain especially for multicrystalline silicon. The textured surfaces are characerised optically using fourier spectroscopy.

[1]  Christophe Ballif,et al.  Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells , 2011 .

[2]  Benedikt Bläsi,et al.  Photon Management Structures Originated by Interference Lithography , 2011 .

[3]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[4]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[5]  Bernhard Fischer,et al.  Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements , 2003 .

[6]  Heinz Schmid,et al.  Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography , 2000 .

[7]  Benedikt Bläsi,et al.  Realization and evaluation of diffractive systems on the back side of silicon solar cells , 2010, Photonics Europe.

[8]  Jan Benick,et al.  Diffractive Backside Structures via Nanoimprint Lithography , 2012 .

[9]  B. Chapman,et al.  Glow Discharge Processes: Sputtering and Plasma Etching , 1980 .

[10]  Daniel Kray Hocheffiziente Solarzellenstrukturen für kristallines Silicium-Material industrieller Qualität , 2004 .

[11]  W. Miles Clift,et al.  Removal of SU-8 photoresist for thick film applications , 2002 .

[12]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[13]  Paul A. Basore,et al.  Extended spectral analysis of internal quantum efficiency , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[14]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[15]  Martin C. Schubert Detektion von infraroter Strahlung zur Beurteilung der Materialqualität von Solar-Silizium , 2008 .

[16]  A. Leo,et al.  Texturing industrial multicrystalline silicon solar cells , 2004 .

[17]  J. F. Allison,et al.  Optical properties of the COMSAT Non-Reflective cell , 1975 .

[18]  베크 마르크,et al.  Imprint stamp comprising cyclic olefin copolymer , 2006 .

[19]  Bertram Schwartz,et al.  Chemical Etching of Silicon II . The System , , , and , 1960 .

[20]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[21]  Richard M. Swanson,et al.  Calculation of surface generation and recombination velocities at the Si‐SiO2 interface , 1985 .

[22]  Keith R. McIntosh,et al.  A freeware program for precise optical analysis of the front surface of a solar cell , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[23]  Matthew Stocks High efficiency multicrystalline silicon solar cells , 1998 .

[24]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[25]  Harold Dekkers,et al.  Etching, texturing and surface decoupling for the next generation of Si solar cells , 2008 .

[26]  M. Terry,et al.  All screen-printed 18% homogeneous emitter solar cells using high volume manufacturing equipment , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[27]  Claas Müller,et al.  Nanoimprint Lithography for Honeycomb Texturing of Multicrystalline Silicon , 2011 .

[28]  H. Feilden,et al.  Enter the dragon? , 2011, Veterinary Record.

[29]  Ralf Preu,et al.  COMPARISON OF TEXTURING METHODS FOR MONOCRYSTALLINE SILICON SOLAR CELLS USING KOH AND Na2C03 , 2003 .

[30]  Holger Reinecke,et al.  Replication of HARMST and large area nanostructured parts using UV cationic polymerization , 2010 .

[31]  Keith R. McIntosh,et al.  Recombination at textured silicon surfaces passivated with silicon dioxide , 2009 .

[32]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[33]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[34]  Alison Lennon,et al.  Inkjet Texturing for Multicrystalline Silicon Solar Cells , 2009 .

[35]  Thomas Käsebier,et al.  Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition , 2012 .

[36]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[37]  Peter Fath,et al.  Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[38]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[39]  Hiroaki Morikawa,et al.  Honeycomb-Structured Multi-Crystalline Silicon Solar Cells With 18.6% Efficiency Via Industrially Applicable Laser Process , 2008 .

[40]  B. Schwartz,et al.  Chemical Etching of Silicon IV . Etching Technology , 1959 .

[41]  Christian Decker,et al.  UV-radiation curing of acrylate/epoxide systems , 2001 .

[42]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[43]  H. Lautenschlager,et al.  An overview of plasma sources suitable for dry etching of solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[44]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[45]  D. J. Silversmith,et al.  Damage induced in Si by ion milling or reactive ion etching , 1983 .

[46]  Jan Haisma,et al.  Mold‐assisted nanolithography: A process for reliable pattern replication , 1996 .

[47]  Claas Müller,et al.  Honeycomb Textured Multicrystalline Silicon Via Nanoimprint Lithoghraphy , 2009 .

[48]  Stefan W. Glunz,et al.  High-Efficiency Crystalline Silicon Solar Cells , 2007 .

[49]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[50]  Frantisek Uherek,et al.  Wafer-scale transfer of nanoimprinted patterns into silicon substrates , 2009 .

[51]  Ha-Duong Ngo,et al.  Plasma Etching of Tapered Features in Silicon for MEMS and Wafer Level Packaging Applications , 2006 .

[52]  Martin A. Green,et al.  A 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping , 1999 .

[53]  Sen-Yue Yang,et al.  A roller embossing process for rapid fabrication of microlens arrays on glass substrates , 2006 .

[54]  A. Goetzberger Optical confinement in thin Si-solar cells by diffuse back reflectors , 1981 .

[55]  R. Preu,et al.  Economical and ecological aspects of plasma processing for industrial solar cell fabrication , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[56]  Ping Sheng,et al.  Optical absorption of thin film on a Lambertian reflector substrate , 1984 .

[57]  E. Yablonovitch Statistical ray optics , 1982 .

[58]  Mingtao Li,et al.  Current status of Nanonex nanoimprint solutions , 2004, SPIE Advanced Lithography.

[59]  Michael T. Gale,et al.  Design and fabrication of submicron grating structures for light trapping in silicon solar cells , 1990, Other Conferences.

[60]  M. Kulkarni,et al.  Acid‐Based Etching of Silicon Wafers: Mass‐Transfer and Kinetic Effects , 2000 .

[61]  K. McIntosh,et al.  Reflection of normally incident light from silicon solar cells with pyramidal texture , 2011 .

[62]  R. Ludemann,et al.  Plasma surface texturization for multicrystalline silicon solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[63]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[64]  Peter Fath,et al.  A simplified process for isotropic texturing of mc-Si , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[65]  Ralf Preu,et al.  Dry plasma processing for industrial crystalline silicon solar cell production , 2010 .

[66]  Jeffrey E. Cotter,et al.  Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces , 2006 .

[67]  R. Novak,et al.  Photoresist Stripping using Ozone/Deionized Water Chemistry , 1997 .

[68]  A. Cuevas,et al.  Application of junction capacitance measurements to the characterization of solar cells , 2006, IEEE Transactions on Electron Devices.

[69]  Y. Inomata,et al.  Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method , 1997 .

[70]  Zheng Cui,et al.  High density patterns fabricated in SU-8 by UV curing nanoimprint , 2007 .

[71]  J. Springer,et al.  Absorption loss at nanorough silver back reflector of thin-film silicon solar cells , 2004 .

[72]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[73]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[74]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[75]  Martin Zimmer,et al.  Formation of a honeycomb texture for multicrystalline silicon solar cells using an inkjetted mask , 2012 .

[76]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[77]  Markus Wellenzohn,et al.  Light trapping by backside diffraction gratings in silicon solar cells revisited. , 2012, Optics express.

[78]  A. Gombert,et al.  Some application cases and related manufacturing techniques for optically functional microstructures on large areas , 2004 .

[79]  A. Luque,et al.  Upper limits to absorption enhancement in thick solar cells using diffraction gratings , 2011 .

[80]  Claas Müller,et al.  Development of Nanoimprint Lithography for Solar Cell Texturisation , 2010 .

[81]  A. Cuevas,et al.  Surface recombination velocity of highly doped n‐type silicon , 1996 .

[82]  Toshihiro Kinoshita,et al.  R&D Progress of Next-Generation Very Thin HITtm Solar Cells , 2010 .

[83]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[84]  Christoph Zechner,et al.  Mechanisch texturierte Solarzellen und Rückkontaktsolarzellen aus kristallinem Silizium , 1999 .

[85]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[86]  Helmut Schift,et al.  Controlled co-evaporation of silanes for nanoimprint stamps , 2005 .

[87]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[88]  Sien Kang,et al.  Direct Film Transfer (DFT) Technology for Kerf-Free Silicon Wafering , 2008 .

[89]  M. Green,et al.  Improved value for the silicon intrinsic carrier concentration from 275 to 375 K , 1991 .

[90]  Andreas Wolf,et al.  Laser-based foil rear side metallization for crystalline silicon solar cells , 2012, Other Conferences.

[91]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[92]  Saskia Möllenbeck,et al.  Issues and Requirements of Polymers for Thermal NIL , 2007 .

[93]  Andreas Erdmann,et al.  Fine-tuned profile simulation of holographically exposed photoresist gratings , 1998 .

[94]  H. Hauser,et al.  Honeycomb Texturing of Silicon Via Nanoimprint Lithography for Solar Cell Applications , 2012, IEEE Journal of Photovoltaics.

[95]  Thomas Käsebier,et al.  Black silicon for solar cell applications , 2012, Photonics Europe.

[96]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[97]  R. Einhaus,et al.  Improved anisotropic etching process for industrial texturing of silicon solar cells , 1999 .

[98]  Douglas A. Keszler,et al.  All-inorganic thermal nanoimprint process , 2010 .

[99]  D. A. Clugston,et al.  PC1D version 5: 32-bit solar cell modeling on personal computers , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[100]  F. B. Wald,et al.  EFG crystal growth technology for low cost terrestrial photovoltaics: review and outlook , 1991 .

[101]  Martin A. Green,et al.  16. 7% efficient, laser textured, buried contact polycrystalline silicon solar cell , 1989 .

[102]  Gerhard Willeke,et al.  Texturing of multicrystalline silicon with acidic wet chemical etching and plasma etching , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[103]  K. Roth,et al.  FLUORINATED GREENHOUSE GASES IN PHOTOVOLTAIC MODULE MANUFACTURING: POTENTIAL EMISSIONS AND ABATEMENT STRATEGIES , 2007 .

[104]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[105]  Andrew Blakers,et al.  Texturing of polycrystalline silicon , 1996 .

[106]  Alexander Bietsch,et al.  Conformal contact and pattern stability of stamps used for soft lithography , 2000 .

[107]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[108]  R. M. Swanson,et al.  Measurement of the emitter saturation current by a contactless photoconductivity decay method , 1985 .

[109]  Stefan W. Glunz,et al.  Theory and experiments on the back side reflectance of silicon wafer solar cells , 2008 .

[110]  R. Ross,et al.  Enter the Dragon , 1996 .

[111]  Ullrich Steiner,et al.  Solvent‐Vapor‐Assisted Imprint Lithography , 2007 .

[112]  J. Gee,et al.  Characterization of random reactive ion etched-textured silicon solar cells , 2001 .

[113]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[114]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[115]  M. L. Terry,et al.  Isotextured Silicon Solar Cell Analysis and Modeling 2: Recombination and Device Modeling , 2012, IEEE Journal of Photovoltaics.

[116]  Clivia M. Sotomayor Torres,et al.  Dye-Containing Polymer Beads as Photonic Crystals , 2000 .

[117]  Marc Hofmann Rear surface conditioning and passivation for locally contacted crystalline silicon solar cells , 2008 .

[118]  M. Verschuuren,et al.  Substrate conformal imprint lithography for nanophotonics , 2010 .

[119]  Dai-Yin Li,et al.  Texturization of multicrystalline silicon solar cells , 2010 .

[120]  Marc Rüdiger,et al.  Numerical Analysis of Locally Contacted Rear Surface Passivated Silicon Solar Cells , 2012 .

[121]  Giso Hahn,et al.  Texturing of String Ribbon silicon , 2010 .

[122]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[123]  Andreas Offenhäusser,et al.  Surface patterning by means of soft lithography for molecular and bio-electronics , 2007 .

[124]  Soon-Hong Kwon,et al.  Surface-plasmon-induced light absorption on a rough silver surface , 2011 .

[125]  Mark Kerr,et al.  Lifetime and efficiency limits of crystalline silicon solar cells , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[126]  R.M. Swanson,et al.  Point-contact silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[127]  Martin A. Green,et al.  High-efficiency silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[128]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[129]  Aasmund Sudbø,et al.  2D back-side diffraction grating for improved light trapping in thin silicon solar cells. , 2010, Optics express.

[130]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[131]  D. Kray,et al.  Analysis of Selective Phosphorous Laser Doping in High-Efficiency Solar Cells , 2009, IEEE Transactions on Electron Devices.

[132]  A. Mihi,et al.  Oriented Colloidal‐Crystal Thin Films by Spin‐Coating Microspheres Dispersed in Volatile Media , 2006 .

[133]  K. McIntosh,et al.  The Contribution of Planes, Vertices, and Edges to Recombination at Pyramidally Textured Surfaces , 2011, IEEE Journal of Photovoltaics.

[134]  Anders Kristensen,et al.  Nanoimprint Lithography – Patterning of Resists Using Molding , 2010 .

[135]  Andrew Blakers,et al.  RIE‐induced carrier lifetime degradation , 2010 .

[136]  Patrik Hoffmann,et al.  High‐Resolution Nanoimprinting with a Robust and Reusable Polymer Mold , 2007 .

[137]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[138]  M. L. Terry,et al.  Modelling isotextured silicon solar cells and modules , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[139]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[140]  H. Jin,et al.  Depassivation Of Si-SiO2 Interface Following Rapid Thermal Annealing , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[141]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[142]  M. Schottler,et al.  Carbon footprint of PECVD chamber cleaning , 2008 .

[143]  Roland Einhaus,et al.  Silicon feedstock for the multi-crystalline photovoltaic industry , 2002 .

[144]  Andreas Fischer Gombert Reseaux diffractifs d'ordre zero comme surfaces antireflection, application aux capteurs solaires , 1998 .

[145]  Gabi Gruetzner,et al.  Investigations of SU-8 removal from metallic high aspect ratio microstructures with a novel plasma technique , 2008 .

[146]  Antonio Martí,et al.  Nano-imprinted rear-side diffraction gratings for absorption enhancement in solar cells , 2012, Optics & Photonics - Solar Energy + Applications.

[147]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[148]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[149]  Benedikt Bläsi,et al.  Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms , 2012 .

[150]  H. Kurz,et al.  Wafer scale patterning by soft UV-nanoimprint lithography , 2004 .

[151]  Jan Benick,et al.  Comparison of Emitter Saturation Current Densities Determined by Quasi-Steady-State Photoconductance Measurements of Effective Carrier Lifetimes at High and Low Injections , 2008 .

[152]  Takehiko Sato,et al.  Large-size multi-crystalline silicon solar cells with honeycomb textured surface and point-contacted rear toward industrial production , 2011 .

[153]  H. S. Osborne,et al.  The international electrotechnical commission , 1953, Electrical Engineering.

[154]  K. Grigoras,et al.  The porous silicon emitter concept applied to multicrystalline silicon solar cells , 1997 .

[155]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .