Real-time perception-level translation from audio signals to vibrotactile effects

In this paper, we propose a real-time perception-level audio-to-vibrotactile translation algorithm. Unlike previous signal-level conversion methods, our algorithm considers only perceptual characteristics, such as loudness and roughness, of audio and tactile stimuli. This perception-level approach allows for designing intuitive and explicit conversion models with clear understandings of their perceptual consequences. Our current implementation is tailored to accurate detection of special sound effects to provide well-synchronized audio-tactile feedback in immersive applications. We also assessed the performance of our translation algorithm in terms of the detection rate of special sound effects, computational performance, and user preference. All the experimental results supported that our algorithm works well as intended with better performance than the signal-level conversion methods, especially for games. Our algorithm can be easily realized in current products, including mobile devices, gaming devices, and 4D home theater systems, for richer user experience.

[1]  Seungmoon Choi,et al.  Vibrotactile score: A score metaphor for designing vibrotactile patterns , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[2]  Jaehoon Jung,et al.  Psychophysical Model for Vibrotactile Rendering in Mobile Devices , 2010, PRESENCE: Teleoperators and Virtual Environments.

[3]  Hugo Fastl,et al.  Psychoacoustics: Facts and Models , 1990 .

[4]  Seungmoon Choi,et al.  posVibEditor: Graphical authoring tool of vibrotactile patterns , 2008, 2008 IEEE International Workshop on Haptic Audio visual Environments and Games.

[5]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[6]  M. Hollins,et al.  Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model , 2005, Perception & psychophysics.

[7]  Jiyoung Kwahk,et al.  A systematic method for analyzing magnitude estimation data , 1999 .

[8]  Seungmoon Choi,et al.  Perceptual space and adjective rating of sinusoidal vibrations perceived via mobile device , 2010, 2010 IEEE Haptics Symposium.

[9]  Vuokko Lantz,et al.  Design of Dynamic Vibrotactile Textures , 2010, IEEE Transactions on Haptics.

[10]  R. Klatzky,et al.  Tactile roughness perception with a rigid link interposed between skin and surface , 1999, Perception & psychophysics.

[11]  Sungkil Lee,et al.  Saliency-Driven Tactile Effect Authoring for Real-Time Visuotactile Feedback , 2012, EuroHaptics.

[12]  Satoshi Tadokoro,et al.  A tactile synthesis method using multiple frequency vibrations for representing virtual touch , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Kyungkoo Jun,et al.  Sound-Specific Vibration Interface using Digital Signal Processing , 2008, 2008 International Conference on Computer Science and Software Engineering.

[14]  George A. Gescheider,et al.  Psychophysics: The Fundamentals , 1997 .

[15]  Ian Oakley,et al.  A tactile glove design and authoring system for immersive multimedia , 2010 .

[16]  Seungmoon Choi,et al.  Consonance Perception of Vibrotactile Chords: A Feasibility Study , 2011, HAID.

[17]  Mark Holliins,et al.  Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis , 1993, Perception & psychophysics.

[18]  William Hutchinson,et al.  The acoustic component of western consonance , 1978 .

[19]  William G. Griswold,et al.  Peopletones: a system for the detection and notification of buddy proximity on mobile phones , 2008, MobiSys '08.

[20]  Chris Chafe Tactile Audio Feedback , 1993, ICMC.

[21]  Pantelis N. Vassilakis,et al.  SRA: A Web-based Research Tool for Spectral and Roughness Analysis of Sound Signals , 2007 .

[22]  Andrei Dipl.-Ing. Ninu Apparatus and method for generating a vibration pattern , 2009 .

[23]  Hugo Fastl,et al.  Psychoacoustics Facts and Models. 2nd updated edition , 1999 .

[24]  Angela Chang,et al.  Audio-haptic feedback in mobile phones , 2005, CHI Extended Abstracts.

[25]  Hsin-Yun Yao,et al.  Perceived Vibration Strength in Mobile Devices: The Effect of Weight and Frequency , 2010, IEEE Transactions on Haptics.

[26]  Deborah I. Fels,et al.  Designing the Model Human Cochlea: An Ambient Crossmodal Audio-Tactile Display , 2009, IEEE Transactions on Haptics.

[27]  G. Gescheider Psychophysics: The Fundamentals , 1997 .

[28]  Ronald T. Verrillo Measurement of Vibrotactile Sensation Magnitude , 2013 .

[29]  A. Kameoka,et al.  Consonance theory part I: consonance of dyads. , 1969, The Journal of the Acoustical Society of America.

[30]  B. Moore,et al.  A Model of Loudness Applicable to Time-Varying Sounds , 2002 .

[31]  Marcelo M. Wanderley,et al.  Examining the Effects of Embedded Vibrotactile Feedback on the Feel of a Digital Musical Instrument , 2011, NIME.

[32]  A. Kameoka,et al.  Consonance theory part II: consonance of complex tones and its calculation method. , 1969, The Journal of the Acoustical Society of America.

[33]  Lorna M. Brown,et al.  A first investigation into the effectiveness of Tactons , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[34]  Marcelo M. Wanderley,et al.  A Systematic Approach to Musical vibrotactile feedback , 2007, ICMC.