A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band

This paper presents a multiscale analysis of a dilatant shear band using a three-dimensional discrete element method and a lattice Boltzmann/finite element hybrid scheme. In particular, three-dimensional simple shear tests are conducted via the discrete element method. A spatial homogenization is performed to recover the macroscopic stress from the micro-mechanical force chains. The pore geometries of the shear band and host matrix are quantitatively evaluated through morphology analyses and lattice Boltzmann/finite element flow simulations. Results from the discrete element simulations imply that grain sliding and rotation occur predominately with the shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local permeability. While considerable anisotropy in the contact fabric is observed with the shear band, anisotropy of the permeability is, at most, modest in the assemblies composed of spherical grains.

[1]  Sia Nemat-Nasser,et al.  A statistical study of fabric in a random assembly of spherical granules , 1982 .

[2]  Ronaldo I. Borja,et al.  Shear band in sand with spatially varying density , 2013 .

[3]  Jens Ledet Jensen,et al.  Use of the geometric average for effective permeability estimation , 1991 .

[4]  Ronaldo I. Borja,et al.  Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations , 2006 .

[5]  S. Hall,et al.  Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach , 2012 .

[6]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[7]  Gioacchino Viggiani,et al.  Discrete and continuum analysis of localised deformation in sand using X-ray mu CT and volumetric digital image correlation , 2010 .

[8]  WaiChing Sun,et al.  Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability , 2011 .

[9]  Pierre Bésuelle,et al.  Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell , 2000 .

[10]  W. B. Lindquist,et al.  Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontaineble , 2000 .

[11]  Ronaldo I. Borja,et al.  Geological and mathematical framework for failure modes in granular rock , 2006 .

[12]  A. Casagrande,et al.  Characteristics of cohesionless soils affecting the stability of slopes and earth fills , 1940 .

[13]  C. Thornton,et al.  Applications of Theoretical Contact Mechanics to Solid Particle System Simulation , 1988 .

[14]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[15]  M. Satake,et al.  Fabric tensor in granular materials , 1982 .

[16]  David D. Pollard,et al.  Distinct element modeling of deformation bands in sandstone , 1995 .

[17]  W. R. Wawersik,et al.  Terrestrial sequestration of CO2: An assessment of research needs , 2001 .

[18]  Schwartz,et al.  New pore-size parameter characterizing transport in porous media. , 1986, Physical review letters.

[19]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[20]  S. Irmay,et al.  On the hydraulic conductivity of unsaturated soils , 1954 .

[21]  Amy L. Rechenmacher,et al.  Characterization of mesoscale instabilities in localized granular shear using digital image correlation , 2011 .

[22]  D. Pollard,et al.  Characterization of strike-slip fault–splay relationships in sandstone , 2007 .

[23]  Amy L. Rechenmacher,et al.  Finite strain analysis of nonuniform deformation inside shear bands in sands , 2012 .

[24]  C. Thornton NUMERICAL SIMULATIONS OF DEVIATORIC SHEAR DEFORMATION OF GRANULAR MEDIA , 2000 .

[25]  P. Baud,et al.  Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography , 2007 .

[26]  S. Youssef,et al.  Assessment of the two relaxation time Lattice‐Boltzmann scheme to simulate Stokes flow in porous media , 2012 .

[27]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[28]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[29]  Guy T. Houlsby,et al.  Potential particles: a method for modelling non-circular particles in DEM , 2009 .

[30]  Katalin Bagi,et al.  Contact rolling and deformation in granular media , 2004, 1901.07342.

[31]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[32]  Aaron I. Packman,et al.  Using X‐ray micro‐tomography and pore‐scale modeling to quantify sediment mixing and fluid flow in a developing streambed , 2009 .

[33]  Y. Feng,et al.  Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues , 2007 .

[34]  J. Rudnicki,et al.  Chapter 5 Localization: Shear bands and compaction bands , 2004 .

[35]  R. Hilfer,et al.  Permeability and conductivity for reconstruction models of porous media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Marie-Françoise Devaux,et al.  COMPUTATION OF MINKOWSKI MEASURES ON 2D AND 3D BINARY IMAGES , 2011 .

[37]  P. A. Cundall,et al.  Computer Simulations of Dense Sphere Assemblies , 1988 .

[38]  J. Rudnicki Shear and compaction band formation on an elliptic yield cap , 2004 .

[39]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[40]  Mourad Zeghal,et al.  COUPLED CONTINUUM-DISCRETE MODEL FOR SATURATED GRANULAR SOILS , 2005 .

[41]  Matthew R. Kuhn,et al.  Implementation of the Jäger contact model for discrete element simulations , 2011, 1812.10374.

[42]  Benjamin Koger Cook,et al.  A coupled fluid–solid model for problems in geomechanics: Application to sand production , 2011 .