Effect of Residence Time on Coal Ash Behavior at High Temperatures in Reducing Atmosphere

Two coals (one coal with high-melting temperature ash and one with low-melting temperature ash) were chosen to investigate the effect of residence time at high temperatures in a reducing atmosphere...

[1]  N. Koker Structure, thermodynamics, and diffusion in CaAl2Si2O8 liquid from first-principles molecular dynamics , 2010 .

[2]  D. Sichen,et al.  Dissolution of Lime in Synthetic ‘FeO’‐SiO2 and CaO‐‘FeO’‐SiO2 Slags , 2010 .

[3]  H. Matsuura,et al.  Effect of size and density on the thermodynamic predictions of coal particle phase formation during coal gasification , 2009 .

[4]  J. Yvon,et al.  Iron role on mechanical properties of ceramics with clays from Ivory Coast , 2009 .

[5]  Lihua Tang,et al.  Fusibility and flow properties of coal ash and slag , 2009 .

[6]  F. Waanders,et al.  Quantification of oxygen capture in mineral matter during gasification , 2008 .

[7]  Bao-qing Li,et al.  Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere , 2008 .

[8]  H. Schneider,et al.  Structure and properties of mullite—A review , 2008 .

[9]  Bart Blanpain,et al.  In Situ Observation of the Dissolution of Spherical Alumina Particles in CaO–Al2O3–SiO2 Melts , 2007 .

[10]  Anne-Gaëlle Collot,et al.  Matching gasification technologies to coal properties , 2006 .

[11]  S. Vassilev,et al.  Behaviour of inorganic matter during heating of Bulgarian coals: 1. Lignites , 2005 .

[12]  Edgar Dutra Zanotto,et al.  Correlation between maximum crystal growth rate and glass transition temperature of silicate glasses , 2005 .

[13]  RajenderKumar Gupta,et al.  Measurement of the Viscosity of Coal-Derived Slag Using Thermomechanical Analysis , 2005 .

[14]  T. Takei,et al.  Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels , 2003 .

[15]  P. Ollero,et al.  Diffusional effects in TGA gasification experiments for kinetic determination , 2002 .

[16]  V. Mathavan,et al.  Reactions and textures in grossular wollastonite scapolite calc silicate granulites from Maligawila, Sri Lanka: evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex , 2001 .

[17]  Evgueni Jak,et al.  Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-'FeO'-SiO2 system) , 2001 .

[18]  E. Jak,et al.  Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-‘FeO’-SiO2 system , 2001 .

[19]  H. J. Hurst,et al.  Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers , 2000 .

[20]  Terry Wall,et al.  Ash Formation Mechanisms during pf Combustion in Reducing Conditions , 2000 .

[21]  H. J. Hurst,et al.  Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes , 1999 .

[22]  A. Quintanar,et al.  Viscosity measurements and empirical predictions for some model gasifier slags-II , 1999 .

[23]  D. Dingwell,et al.  Multicomponent diffusion in the molten system K2O-Na2O-Al2O3-SiO2-H2O , 1998 .

[24]  T. Wall,et al.  Use of Thermomechanical Analysis To Quantify the Flux Additions Necessary for Slag Flow in Slagging Gasifiers Fired with Coal , 1998 .

[25]  A. Pelton,et al.  Thermodynamic modelling of the system Al2O3SiO2CaOFeOFe2O3 to predict the flux requirements for coal ash slags , 1998 .

[26]  Y. Ninomiya,et al.  Ash melting behavior under coal gasification conditions , 1997 .

[27]  J. Patterson,et al.  Phase Diagram Approach to the Fluxing Effect of Additions of CaCO3 on Australian Coal Ashes , 1996 .

[28]  H. Brink,et al.  A mechanistic study of the formation of slags from iron-rich coals , 1996 .

[29]  M. Weeda,et al.  The behaviour of coal mineral carbonates in a simulated coal flame , 1996 .

[30]  C. Lesher,et al.  Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid , 1996 .

[31]  T. DebRoy,et al.  Dissolution of MgO in stagnant CaO-FeO-SiO2 slags , 1994 .

[32]  D. Baker Estimation of diffusion coefficients during interdiffusion of geologic melts: Application of transition state theory , 1992 .

[33]  W. Thomson,et al.  Mullite Formation Kinetics of a Single‐Phase Gel , 1990 .

[34]  S. Srinivasachar,et al.  Mineral behavior during coal combustion 1. Pyrite transformations , 1990 .

[35]  Kenneth C. Mills,et al.  PHYSICAL PROPERTIES OF BOS SLAGS , 1987 .

[36]  G. R. Dunmyre,et al.  Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres , 1981 .

[37]  J. Nankervis,et al.  Phase changes in mineral matter of North Dakota lignites caused by heating to 1200 °C , 1980 .

[38]  R. Mitchell,et al.  Mineralogy of ash of some American coals: variations with temperature and source , 1976 .

[39]  J. S. Chong,et al.  Rheology of concentrated suspensions , 1971 .

[40]  N. Chatterjee Experiments on the phase transition calcite+wollastonite+ +epidote=grossular-andraditess+CO2+H2O , 1967 .

[41]  A. Rodríguez,et al.  CATALYTIC MULLITIZATION OF KAOLINITE BY METALLIC OXIDE , 1942 .