Application of Computational Techniques in Pharmacy and Medicine

[1]  A. Holt,et al.  Orientation and dynamics of transmembrane peptides: the power of simple models , 2009, European Biophysics Journal.

[2]  W F Drew Bennett,et al.  Distribution of amino acids in a lipid bilayer from computer simulations. , 2008, Biophysical journal.

[3]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[4]  V. I. Passechnik,et al.  Bilayer Lipid Membranes. Structure and Mechanical Properties , 1995 .

[5]  J. Killian,et al.  Hydrophobic mismatch between proteins and lipids in membranes. , 1998, Biochimica et biophysica acta.

[6]  Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis. , 1998, Biophysical journal.

[7]  J. Killian,et al.  Interfacial Positioning and Stability of Transmembrane Peptides in Lipid Bilayers Studied by Combining Hydrogen/Deuterium Exchange and Mass Spectrometry* , 2001, The Journal of Biological Chemistry.

[8]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[9]  P. W. Holloway,et al.  Quenching of tryptophan fluorescence by brominated phospholipid. , 1990, Biochemistry.

[10]  H. Hauser The Physical Chemistry of Lipids: from Alkanes to Phospholipids , 1988 .

[11]  F. Separovic,et al.  Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. , 2012, Biochimica et biophysica acta.

[12]  Erik Strandberg,et al.  Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR , 2002 .

[13]  R. McElhaney Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. , 1986, Biochimica et biophysica acta.

[14]  B. Roux,et al.  Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. , 1998, Biophysical journal.

[15]  M. Bloom,et al.  Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective , 1991, Quarterly Reviews of Biophysics.

[16]  T. Allen,et al.  The determinants of hydrophobic mismatch response for transmembrane helices. , 2013, Biochimica et biophysica acta.

[17]  C. Pace,et al.  A helix propensity scale based on experimental studies of peptides and proteins. , 1998, Biophysical journal.

[18]  D. Marsh,et al.  Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. , 1998, Biochimica et biophysica acta.

[19]  Philip Yeagle,et al.  The Structure of Biological Membranes , 2004 .

[20]  C. Mant,et al.  Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. , 2007, Biochemistry.

[21]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[22]  R. Hodges,et al.  Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers. , 2004, Biophysical journal.

[23]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[24]  R. Koeppe,et al.  Helical distortion in tryptophan- and lysine-anchored membrane-spanning alpha-helices as a function of hydrophobic mismatch: a solid-state deuterium NMR investigation using the geometric analysis of labeled alanines method. , 2008, Biophysical journal.

[25]  J. Killian,et al.  Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. , 1998, Biochemistry.

[26]  J. Killian,et al.  Hydrophobic matching mechanism investigated by molecular dynamics simulations , 2002 .

[27]  J. Killian,et al.  Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. , 2005, Biochemistry.

[28]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[29]  I. Vorobyov,et al.  The role of membrane thickness in charged protein-lipid interactions. , 2012, Biochimica et biophysica acta.

[30]  R. Hodges,et al.  Interaction of a synthetic amphiphilic polypeptide and lipids in a bilayer structure , 1983 .

[31]  D. Sargent Voltage jump/capacitance relaxation studies of bilayer structure and dynamics , 1975, The Journal of Membrane Biology.

[32]  Q. Cui,et al.  Does arginine remain protonated in the lipid membrane? Insights from microscopic pKa calculations. , 2008, Biophysical journal.

[33]  H. Scheraga,et al.  Helix-Coil Stability Constants for the Naturally Occurring Amino Acids in Water. VI. Leucine Parameters from Random Poly(hydroxypropylglutamine-co-L-leucine) and Poly(hydroxybutylglutamine-co-L-leucine) , 1972 .

[34]  R. McElhaney,et al.  Mechanisms of the interaction of α-helical transmembrane peptides with phospholipid bilayers , 2002 .

[35]  Wilfred F. van Gunsteren,et al.  CONVERGENCE PROPERTIES OF FREE ENERGY CALCULATIONS : ALPHA -CYCLODEXTRIN COMPLEXES AS A CASE STUDY , 1994 .

[36]  A. Watts,et al.  Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. , 1998, Biochimica et biophysica acta.

[37]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Killian,et al.  Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. , 1996, Biochemistry.

[39]  G. S. Smith,et al.  X-ray structural studies of freely suspended ordered hydrated DMPC multimembrane films , 1990 .

[40]  D. Tieleman,et al.  Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. , 2009, Biochimica et biophysica acta.

[41]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[42]  K. Merz,et al.  Interaction of the Fusion Inhibiting Peptide Carbobenzoxy-D-Phe-L-Phe-Gly with N-Methyldioleoylphosphatidylethanolamine Lipid Bilayers , 1995 .

[43]  E. Lindahl,et al.  Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations. , 2006, Biophysical journal.

[44]  Egbert Egberts Molecular dynamics simulation of multibilayer membranes. , 1988 .

[45]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[46]  V. Parsegian,et al.  Hydration forces between phospholipid bilayers , 1989 .

[47]  R. Hodges,et al.  Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H-NMR , 2004, European Biophysics Journal.

[48]  J. Nagle,et al.  Structure of gel phase DPPC determined by X-ray diffraction. , 2018, Chemistry and physics of lipids.

[49]  J. Killian,et al.  Synthetic peptides as models for intrinsic membrane proteins , 2003, FEBS letters.

[50]  J. Killian,et al.  Different Membrane Anchoring Positions of Tryptophan and Lysine in Synthetic Transmembrane α-Helical Peptides* , 1999, The Journal of Biological Chemistry.

[51]  C. Farés,et al.  Magic angle spinning and static oriented sample NMR studies of the relaxation in the rotating frame of membrane peptides , 2005 .

[52]  J. Salgado,et al.  The dynamic orientation of membrane-bound peptides: bridging simulations and experiments. , 2007, Biophysical journal.

[53]  D. Engelman,et al.  Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. , 1983, Journal of molecular biology.

[54]  A. Holt,et al.  Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. , 2009, Biophysical journal.

[55]  Nikolai S. Zefirov,et al.  Fragmental Approach in QSPR , 2002, J. Chem. Inf. Comput. Sci..

[56]  R. Hodges,et al.  Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. , 1992, Biochemistry.

[57]  D. Sargent,et al.  A study of the interaction of some neuropeptides and their analogs with bilayer lipid membranes and liposomes , 1997 .

[58]  M. Klein,et al.  Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. , 1996, Biophysical journal.

[59]  J. Killian,et al.  Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Toby W Allen,et al.  The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. , 2013, Biochimica et biophysica acta.

[61]  J. Killian,et al.  On the orientation of a designed transmembrane peptide: toward the right tilt angle? , 2007, Journal of the American Chemical Society.

[62]  M. Lafleur,et al.  Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. , 2001, Biochimica et biophysica acta.

[63]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[64]  J. Killian,et al.  Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. , 2003, Biochemistry.

[65]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[66]  R. Hodges,et al.  High resolution 1H nuclear magnetic resonance of a transmembrane peptide. , 1995, Biophysical journal.

[67]  P. Y. Chou,et al.  β-turns in proteins☆ , 1977 .

[68]  J. Huschilt,et al.  Simultaneous modeling of phase and calorimetric behavior in an amphiphilic peptide/phospholipid model membrane. , 1985, Biochemistry.

[69]  G Büldt,et al.  Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. , 1979, Journal of molecular biology.

[70]  Corwin Hansch,et al.  An approach toward the problem of outliers in QSAR. , 2005, Bioorganic & medicinal chemistry.

[71]  Erik Strandberg,et al.  Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. , 2004, Biophysical journal.

[72]  K V Damodaran,et al.  A comparison of DMPC- and DLPE-based lipid bilayers. , 1994, Biophysical journal.

[73]  A. Blume,et al.  Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. , 2012, Biochimica et biophysica acta.

[74]  T. Hianik,et al.  Interaction of the antimicrobial peptide gramicidin S with dimyristoyl--phosphatidylcholine bilayer membranes: a densitometry and sound velocimetry study. , 2001, Biochimica et biophysica acta.

[75]  D. Tieleman,et al.  Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. , 2010, Biophysical journal.

[76]  P. Huang,et al.  Interaction of an amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study. , 1995, Journal of biomolecular structure & dynamics.

[77]  B. Millman,et al.  Orientation of α-helical peptides in a lipid bilayer , 1989 .

[78]  T. Woolf Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics. , 1997, Biophysical journal.

[79]  J. Nagle,et al.  Area/lipid of bilayers from NMR. , 1993, Biophysical journal.

[80]  S H White,et al.  Hydrophobic interactions of peptides with membrane interfaces. , 1998, Biochimica et biophysica acta.

[81]  T. Hianik,et al.  Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry. , 2007, Biochimica et biophysica acta.

[82]  D. Marsh,et al.  Phospholipid Bilayers: Physical Principles and Models , 1987 .

[83]  B. Roux,et al.  Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. , 1997, Biophysical journal.

[84]  J. Killian,et al.  Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review) , 2003, Molecular membrane biology.

[85]  C W Yap,et al.  Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. , 2007, Mini reviews in medicinal chemistry.

[86]  D. Sargent,et al.  A study of the interaction of adrenocorticotropin-(1–24)-tetracosapeptide with BLM and liposomes , 1996 .

[87]  Wonpil Im,et al.  Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. , 2010, Biophysical journal.

[88]  J S Hyde,et al.  Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane alpha-helical peptide. , 1998, Biochemistry.