Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.

[1]  Zhiwen Liu,et al.  Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02962k Click here for additional data file. , 2016, Chemical science.

[2]  K. Nguyen,et al.  Development of Intrinsically Photoluminescent and Photostable Polylactones , 2014, Advanced materials.

[3]  N. Wu,et al.  Origin of strong excitation wavelength dependent fluorescence of graphene oxide. , 2014, ACS nano.

[4]  D. Bogdał,et al.  Luminescence phenomena of biodegradable photoluminescent poly(diol citrates). , 2013, Chemical communications.

[5]  R. T. Tran,et al.  Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers. , 2013, Biomaterials.

[6]  Bai Yang,et al.  Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. , 2013, Angewandte Chemie.

[7]  Jian Yang,et al.  Design Strategies for Fluorescent Biodegradable Polymeric Biomaterials. , 2013, Journal of materials chemistry. B.

[8]  Miao Sun,et al.  A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. , 2012, Journal of the American Chemical Society.

[9]  T. K. Maiti,et al.  Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. , 2012, Chemical communications.

[10]  W. Becker Fluorescence lifetime imaging – techniques and applications , 2012, Journal of microscopy.

[11]  Guohua Jiang,et al.  Synthesis and fluorescence properties of hyperbranched poly(amidoamine)s with high density tertiary nitrogen , 2010 .

[12]  S. Achilefu,et al.  Fluorescence lifetime measurements and biological imaging. , 2010, Chemical reviews.

[13]  C. Pan,et al.  Synthesis and Fluorescent Properties of Biodegradable Hyperbranched Poly(amido amine)s. , 2009, Macromolecular rapid communications.

[14]  Wei Chen,et al.  Development of aliphatic biodegradable photoluminescent polymers , 2009, Proceedings of the National Academy of Sciences.

[15]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[16]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[17]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[18]  T. Imae,et al.  Fluorescence emission from PAMAM and PPI dendrimers. , 2007, Journal of colloid and interface science.

[19]  W. Domcke,et al.  The chemical physics of the photostability of life , 2006 .

[20]  A. Samanta Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. , 2006, The journal of physical chemistry. B.

[21]  A. Stanger Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. , 2006, The Journal of organic chemistry.

[22]  Feng Wang,et al.  Luminescent nanomaterials for biological labelling , 2005, Nanotechnology.

[23]  Benjamin Tardivel,et al.  Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. , 2005, The Journal of chemical physics.

[24]  T. Imae,et al.  Fluorescence emission from dendrimers and its pH dependence. , 2004, Journal of the American Chemical Society.

[25]  A. M. Halpern STRUCTURAL EFFECTS ON PHOTOPHYSICAL PROCESSES IN SATURATED AMINES PART 3 , 2002 .

[26]  R. Duncan,et al.  Poly(amido‐amine)s: Biomedical Applications , 2002 .

[27]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[28]  M. Maroncelli,et al.  Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics† , 1996 .

[29]  T. Gartman,et al.  Structural effects on photophysical processes in saturated amines. III , 1974 .

[30]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[31]  A. Fletcher Fluorescence emission band shift with wavelength of excitation , 1968 .

[32]  Alexander P Demchenko,et al.  The red-edge effects: 30 years of exploration. , 2002, Luminescence : the journal of biological and chemical luminescence.

[33]  R. Davidson,et al.  Fluorescent excimer formation by α,ω-diaminoalkanes and related compounds , 1985 .

[34]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[35]  T. M. Krygowski,et al.  Definition of aromaticity basing on the harmonic oscillator model , 1972 .

[36]  L. F. Phillips,et al.  Fluorescence of aliphatic amines , 1971 .

[37]  Price Zh PRINCIPLE OF FLUORESCENCE MICROSCOPY. , 1965 .