Classifying High-cadence Microlensing Light Curves. I. Defining Features
暂无分享,去创建一个
B. Scott Gaudi | Matthew Penny | R. A. Street | Joshua Pepper | Somayeh Khakpash | M. Penny | J. Pepper | B. Gaudi | R. Street | S. Khakpash
[1] S. F. Jorgensen,et al. OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star* , 2004, astro-ph/0404394.
[2] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[3] A. Udalski. The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .
[4] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[5] Jae Woo Lee,et al. Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.
[6] Andrew Gould. Theory of Pixel Lensing , 1995 .
[7] Pavlos Protopapas,et al. AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA , 2013, ArXiv.
[8] D. Bennett,et al. A New Nonplanetary Interpretation of the Microlensing Event OGLE-2013-BLG-0723 , 2016, 1604.06533.
[9] Cheongho Han,et al. Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.
[10] Yann Le Du,et al. Lightcurve Classification in Massive Variability Surveys , 2003 .
[11] Optical Gravitational Lensing Experiment OGLE‐1999‐BUL‐32: the longest ever microlensing event – evidence for a stellar mass black hole? , 2001, astro-ph/0108312.
[12] A. J. Connolly,et al. Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) , 2019, Publications of the Astronomical Society of the Pacific.
[13] K. Ulaczyk,et al. Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.
[14] Shude Mao,et al. Detectability of orbital motion in stellar binary and planetary microlenses , 2010, 1010.5940.
[15] Rachel Street,et al. A machine learning classifier for microlensing in wide-field surveys , 2019, Astron. Comput..
[16] R. Nemiroff,et al. Finite source sizes and the information content of macho-type lens search light curves , 1994, astro-ph/9401005.
[17] K. Sokolovsky,et al. Machine learning search for variable stars , 2017, 1710.07290.
[18] R. Perna,et al. Identifying Microlensing by Binaries , 1997, astro-ph/9702088.
[19] A. Gal-Yam,et al. OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.
[20] J. B. Marquette,et al. ExELS: an exoplanet legacy science proposal for the ESA Euclid mission – I. Cold exoplanets , 2012, 1206.5296.
[21] N. Wyn Evans,et al. Light-curve classification in massive variability surveys — I. Microlensing , 2002, astro-ph/0211121.
[22] R. Poleski,et al. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys , 2017, 1712.01042.
[23] L. Valenzuela,et al. Unsupervised classification of variable stars , 2018, 1801.09723.
[24] Sang-Mok Cha,et al. KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .
[25] R. Poleski,et al. No large population of unbound or wide-orbit Jupiter-mass planets , 2017, Nature.
[26] Annie C. Robin,et al. Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates , 2018, The Astrophysical Journal Supplement Series.
[27] R. Di Stefano,et al. Interpretation of gravitational microlensing by binary systems , 1995 .
[28] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[29] Y. Watase,et al. Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .
[30] R. Pogge,et al. Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry , 2017, 1703.06883.
[31] R. Jurek,et al. The busy function: a new analytic function for describing the integrated 21-cm spectral profile of galaxies , 2013, 1311.5308.
[32] Jan Skowron,et al. SUPER-MASSIVE PLANETS AROUND LATE-TYPE STARS—THE CASE OF OGLE-2012-BLG-0406Lb , 2013, 1307.4084.
[33] S. Mao,et al. Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .
[34] P. Wozniak,et al. Microlensing of Blended Stellar Images , 1997, astro-ph/9702194.
[35] Wei Zhu,et al. Augmenting WFIRST Microlensing with a Ground-based Telescope Network , 2016, 1601.03043.
[36] Przemek Mroz. Identifying microlensing events using neural networks , 2020, ArXiv.
[37] Gravitational Microlensing Events Due to Stellar-Mass Black Holes* , 2001, astro-ph/0109467.
[38] Signs of the cusps in binary lenses , 2000, astro-ph/0006208.
[39] M. Penny. SPEEDING UP LOW-MASS PLANETARY MICROLENSING SIMULATIONS AND MODELING: THE CAUSTIC REGION OF INFLUENCE , 2013, 1311.1050.
[40] M. Penny,et al. A Fast Approximate Approach to Microlensing Survey Analysis , 2019, The Astronomical Journal.
[41] B. Scott Gaudi,et al. Microlensing Surveys for Exoplanets , 2012 .