Classifying High-cadence Microlensing Light Curves. I. Defining Features

Microlensing is a powerful tool for discovering cold exoplanets, and the Roman Space Telescope microlensing survey will discover over 1000 such planets. Rapid, automated classification of Roman’s microlensing events can be used to prioritize follow-up observations of the most interesting events. Machine learning is now often used for classification problems in astronomy, but the success of such algorithms can rely on the definition of appropriate features that capture essential elements of the observations that can map to parameters of interest. In this paper, we introduce tools that we have developed to capture features in simulated Roman light curves of different types of microlensing events, and we evaluate their effectiveness in classifying microlensing light curves. These features are quantified as parameters that can be used to decide the likelihood that a given light curve is due to a specific type of microlensing event. This method leaves us with a list of parameters that describe features like the smoothness of the peak, symmetry, the number of peaks, and the width and height of small deviations from the main peak. This will allow us to quickly analyze a set of microlensing light curves and later use the resulting parameters as input to machine learning algorithms to classify the events.

[1]  S. F. Jorgensen,et al.  OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star* , 2004, astro-ph/0404394.

[2]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[3]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[4]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[5]  Jae Woo Lee,et al.  Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.

[6]  Andrew Gould Theory of Pixel Lensing , 1995 .

[7]  Pavlos Protopapas,et al.  AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA , 2013, ArXiv.

[8]  D. Bennett,et al.  A New Nonplanetary Interpretation of the Microlensing Event OGLE-2013-BLG-0723 , 2016, 1604.06533.

[9]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[10]  Yann Le Du,et al.  Lightcurve Classification in Massive Variability Surveys , 2003 .

[11]  Optical Gravitational Lensing Experiment OGLE‐1999‐BUL‐32: the longest ever microlensing event – evidence for a stellar mass black hole? , 2001, astro-ph/0108312.

[12]  A. J. Connolly,et al.  Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) , 2019, Publications of the Astronomical Society of the Pacific.

[13]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[14]  Shude Mao,et al.  Detectability of orbital motion in stellar binary and planetary microlenses , 2010, 1010.5940.

[15]  Rachel Street,et al.  A machine learning classifier for microlensing in wide-field surveys , 2019, Astron. Comput..

[16]  R. Nemiroff,et al.  Finite source sizes and the information content of macho-type lens search light curves , 1994, astro-ph/9401005.

[17]  K. Sokolovsky,et al.  Machine learning search for variable stars , 2017, 1710.07290.

[18]  R. Perna,et al.  Identifying Microlensing by Binaries , 1997, astro-ph/9702088.

[19]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[20]  J. B. Marquette,et al.  ExELS: an exoplanet legacy science proposal for the ESA Euclid mission – I. Cold exoplanets , 2012, 1206.5296.

[21]  N. Wyn Evans,et al.  Light-curve classification in massive variability surveys — I. Microlensing , 2002, astro-ph/0211121.

[22]  R. Poleski,et al.  A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys , 2017, 1712.01042.

[23]  L. Valenzuela,et al.  Unsupervised classification of variable stars , 2018, 1801.09723.

[24]  Sang-Mok Cha,et al.  KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .

[25]  R. Poleski,et al.  No large population of unbound or wide-orbit Jupiter-mass planets , 2017, Nature.

[26]  Annie C. Robin,et al.  Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates , 2018, The Astrophysical Journal Supplement Series.

[27]  R. Di Stefano,et al.  Interpretation of gravitational microlensing by binary systems , 1995 .

[28]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[29]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[30]  R. Pogge,et al.  Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry , 2017, 1703.06883.

[31]  R. Jurek,et al.  The busy function: a new analytic function for describing the integrated 21-cm spectral profile of galaxies , 2013, 1311.5308.

[32]  Jan Skowron,et al.  SUPER-MASSIVE PLANETS AROUND LATE-TYPE STARS—THE CASE OF OGLE-2012-BLG-0406Lb , 2013, 1307.4084.

[33]  S. Mao,et al.  Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .

[34]  P. Wozniak,et al.  Microlensing of Blended Stellar Images , 1997, astro-ph/9702194.

[35]  Wei Zhu,et al.  Augmenting WFIRST Microlensing with a Ground-based Telescope Network , 2016, 1601.03043.

[36]  Przemek Mroz Identifying microlensing events using neural networks , 2020, ArXiv.

[37]  Gravitational Microlensing Events Due to Stellar-Mass Black Holes* , 2001, astro-ph/0109467.

[38]  Signs of the cusps in binary lenses , 2000, astro-ph/0006208.

[39]  M. Penny SPEEDING UP LOW-MASS PLANETARY MICROLENSING SIMULATIONS AND MODELING: THE CAUSTIC REGION OF INFLUENCE , 2013, 1311.1050.

[40]  M. Penny,et al.  A Fast Approximate Approach to Microlensing Survey Analysis , 2019, The Astronomical Journal.

[41]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .