Generating personalized counterfactual interventions for algorithmic recourse by eliciting user preferences

Counterfactual interventions are a powerful tool to explain the decisions of a black-box decision process, and to enable algorithmic recourse. They are a sequence of actions that, if performed by a user, can overturn an unfavourable decision made by an automated decision system. However, most of the current methods provide interventions without considering the user’s preferences. For example, a user might prefer doing certain actions with respect to others. In this work, we present the first human-in-the-loop approach to perform algorithmic recourse by eliciting user preferences. We introduce a polynomial procedure to ask choice-set questions which maximize the Expected Utility of Selection (EUS), and use it to iteratively refine our cost estimates in a Bayesian setting. We integrate this preference elicitation strategy into a reinforcement learning agent coupled with Monte Carlo Tree Search for efficient exploration, so as to provide personalized interventions achieving algorithmic recourse. An experimental evaluation on synthetic and real-world datasets shows that a handful of queries allows to achieve a substantial reduction in the cost of interventions with respect to user-independent alternatives.

[1]  Andrea Passerini,et al.  Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis , 2022, Machine Learning.

[2]  J. Peacock,et al.  zeus: A Python implementation of ensemble slice sampling for efficient Bayesian parameter inference , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  Eirini Ntoutsi,et al.  Consequence-aware Sequential Counterfactual Generation , 2021, ECML/PKDD.

[4]  Bernhard Schölkopf,et al.  A survey of algorithmic recourse: definitions, formulations, solutions, and prospects , 2020, ArXiv.

[5]  Craig Boutilier,et al.  On the equivalence of optimal recommendation sets and myopically optimal query sets , 2020, Artif. Intell..

[6]  T. Kumar,et al.  An Approach for Prediction of Loan Approval using Machine Learning Algorithm , 2020, 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC).

[7]  Julius von Kügelgen,et al.  Algorithmic recourse under imperfect causal knowledge: a probabilistic approach , 2020, NeurIPS.

[8]  Bernd Bischl,et al.  Multi-Objective Counterfactual Explanations , 2020, PPSN.

[9]  Bernhard Schölkopf,et al.  Algorithmic Recourse: from Counterfactual Explanations to Interventions , 2020, FAccT.

[10]  The EU General Data Protection Regulation (GDPR) , 2020 .

[11]  Manuel Gomez-Rodriguez,et al.  Decisions, Counterfactual Explanations and Strategic Behavior , 2020, NeurIPS.

[12]  Craig Boutilier,et al.  Gradient-based Optimization for Bayesian Preference Elicitation , 2019, AAAI.

[13]  William S. Moses,et al.  Extracting Incentives from Black-Box Decisions , 2019, ArXiv.

[14]  Aws Albarghouthi,et al.  Synthesizing Action Sequences for Modifying Model Decisions , 2019, AAAI.

[15]  Jung Sub Kim,et al.  Adopting machine learning to automatically identify candidate patients for corneal refractive surgery , 2019, npj Digital Medicine.

[16]  Amir-Hossein Karimi,et al.  Model-Agnostic Counterfactual Explanations for Consequential Decisions , 2019, AISTATS.

[17]  Amit Sharma,et al.  Explaining machine learning classifiers through diverse counterfactual explanations , 2019, FAT*.

[18]  Giulia Battistoni,et al.  Causality , 2019, Mind and the Present.

[19]  Cornelius J. König,et al.  Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening , 2018 .

[20]  Yang Liu,et al.  Actionable Recourse in Linear Classification , 2018, FAT.

[21]  Franco Turini,et al.  Local Rule-Based Explanations of Black Box Decision Systems , 2018, ArXiv.

[22]  H. Farid,et al.  The accuracy, fairness, and limits of predicting recidivism , 2018, Science Advances.

[23]  Andrea Passerini,et al.  Constructive Preference Elicitation over Hybrid Combinatorial Spaces , 2017, AAAI.

[24]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[25]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[26]  Paolo Viappiani,et al.  Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems , 2017, Artif. Intell..

[27]  Patrice Perny,et al.  Incremental Preference Elicitation for Decision Making Under Risk with the Rank-Dependent Utility Model , 2016, UAI.

[28]  Andrea Passerini,et al.  Constructive Preference Elicitation by Setwise Max-Margin Learning , 2016, IJCAI.

[29]  Risto Miikkulainen,et al.  GRADE: Machine Learning Support for Graduate Admissions , 2013, AI Mag..

[30]  M. Sebag,et al.  APRIL: Active Preference-learning based Reinforcement Learning , 2012, ECML/PKDD.

[31]  Craig Boutilier,et al.  Robust Approximation and Incremental Elicitation in Voting Protocols , 2011, IJCAI.

[32]  Craig Boutilier,et al.  Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets , 2010, NIPS.

[33]  Scott Sanner,et al.  Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries , 2010, AISTATS.

[34]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[35]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[36]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[37]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[38]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[39]  Nic Wilson,et al.  Efficient Exact Computation of Setwise Minimax Regret for Interactive Preference Elicitation , 2021, AAMAS.

[40]  Ilia Stepin,et al.  A Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable Artificial Intelligence , 2021, IEEE Access.

[41]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.