The Caenorhabditis elegans Synthetic Multivulva Genes Prevent Ras Pathway Activation by Tightly Repressing Global Ectopic Expression of lin-3 EGF

The Caenorhabditis elegans class A and B synthetic multivulva (synMuv) genes redundantly antagonize an EGF/Ras pathway to prevent ectopic vulval induction. We identify a class A synMuv mutation in the promoter of the lin-3 EGF gene, establishing that lin-3 is the key biological target of the class A synMuv genes in vulval development and that the repressive activities of the class A and B synMuv pathways are integrated at the level of lin-3 expression. Using FISH with single mRNA molecule resolution, we find that lin-3 EGF expression is tightly restricted to only a few tissues in wild-type animals, including the germline. In synMuv double mutants, lin-3 EGF is ectopically expressed at low levels throughout the animal. Our findings reveal that the widespread ectopic expression of a growth factor mRNA at concentrations much lower than that in the normal domain of expression can abnormally activate the Ras pathway and alter cell fates. These results suggest hypotheses for the mechanistic basis of the functional redundancy between the tumor-suppressor-like class A and B synMuv genes: the class A synMuv genes either directly or indirectly specifically repress ectopic lin-3 expression; while the class B synMuv genes might function similarly, but alternatively might act to repress lin-3 as a consequence of their role in preventing cells from adopting a germline-like fate. Analogous genes in mammals might function as tumor suppressors by preventing broad ectopic expression of EGF-like ligands.

[1]  A. Rechtsteiner,et al.  synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival , 2011, Development.

[2]  H. Horvitz,et al.  The LIN-15A and LIN-56 Transcriptional Regulators Interact to Negatively Regulate EGF/Ras Signaling in Caenorhabditis elegans Vulval Cell-Fate Determination , 2011, Genetics.

[3]  V. Coustham,et al.  HPL-2/HP1 Prevents Inappropriate Vulval Induction in Caenorhabditis elegans by Acting in Both HYP7 and Vulval Precursor Cells , 2009, Genetics.

[4]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[5]  B. Yandell,et al.  Multiple Levels of Redundant Processes Inhibit Caenorhabditis elegans Vulval Cell Fates , 2008, Genetics.

[6]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[7]  Kornelia Polyak,et al.  Microenvironmental regulation of cancer development. , 2008, Current opinion in genetics & development.

[8]  Satoshi O. Suzuki,et al.  Validation of HB-EGF and amphiregulin as targets for human cancer therapy. , 2008, Biochemical and biophysical research communications.

[9]  H. Horvitz,et al.  Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development , 2007, Development.

[10]  Min Han,et al.  SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. , 2006, Developmental cell.

[11]  J. Kimble,et al.  Germ-line induction of the Caenorhabditis elegans vulva. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Normanno,et al.  Epidermal growth factor receptor (EGFR) signaling in cancer. , 2006, Gene.

[13]  Melissa M. Harrison,et al.  lin-8, Which Antagonizes Caenorhabditis elegans Ras-Mediated Vulval Induction, Encodes a Novel Nuclear Protein That Interacts With the LIN-35 Rb Protein , 2005, Genetics.

[14]  Harrison W. Gabel,et al.  Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants , 2005, Nature.

[15]  A. Fraser,et al.  Chromatin regulation and sumoylation in the inhibition of Ras‐induced vulval development in Caenorhabditis elegans , 2005, The EMBO journal.

[16]  H. Horvitz,et al.  A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. , 2004, Developmental cell.

[17]  M. Chesney,et al.  The sys-1 and sys-3 Genes Cooperate With Wnt Signaling to Establish the Proximal-Distal Axis of the Caenorhabditis elegans Gonad , 2004, Genetics.

[18]  B. J. Hwang,et al.  A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development , 2004, Development.

[19]  C. Mello,et al.  MEP-1 and a Homolog of the NURD Complex Component Mi-2 Act Together to Maintain Germline-Soma Distinctions in C. elegans , 2002, Cell.

[20]  F. Palladino,et al.  A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development , 2002, EMBO reports.

[21]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[22]  H. Horvitz,et al.  dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. , 2001, Molecular cell.

[23]  J. Ahringer,et al.  NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans , 2000, Current Biology.

[24]  A. Fire,et al.  The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. , 1999, Genes & development.

[25]  R. J. Hill,et al.  Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. , 1999, Genetics.

[26]  P. Sternberg,et al.  Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia , 1999, Current Biology.

[27]  H. Horvitz,et al.  lin-35 and lin-53, Two Genes that Antagonize a C. elegans Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein RbAp48 , 1998, Cell.

[28]  P. Sternberg,et al.  Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in C. elegans. , 1998, Development.

[29]  W. G. Kelly,et al.  Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. , 1997, Genetics.

[30]  P. Sternberg,et al.  A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog , 1996, Molecular and cellular biology.

[31]  E. Hedgecock,et al.  The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. , 1995, Genetics.

[32]  Thomas R Clandinin,et al.  Different Levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates , 1995, Cell.

[33]  H. Horvitz,et al.  The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. , 1994, Genetics.

[34]  P. Sternberg,et al.  The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. , 1994, Molecular biology of the cell.

[35]  Paul W. Sternberg,et al.  The gene lin-3 encodes an inductive signal for vulval development in C. elegans , 1992, Nature.

[36]  Paul W. Sternberg,et al.  The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily , 1990, Nature.

[37]  J. Massagué,et al.  Transforming growth factor-alpha. A model for membrane-anchored growth factors. , 1990, The Journal of biological chemistry.

[38]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[39]  P. Sternberg,et al.  The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. , 1990, Genetics.

[40]  P. Sternberg,et al.  let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein , 1990, Cell.

[41]  E. Hedgecock,et al.  Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis , 1990, Nature.

[42]  H. Horvitz,et al.  Cell interactions coordinate the development of the C. elegans egg-laying system , 1990, Cell.

[43]  R. Palmiter,et al.  Overexpression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast , 1990, Cell.

[44]  G. Merlino,et al.  TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas , 1990, Cell.

[45]  H. Horvitz,et al.  The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. , 1989, Genetics.

[46]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[47]  H. Horvitz,et al.  A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans , 1987, Nature.

[48]  Paul W. Sternberg,et al.  Pattern formation during vulval development in C. elegans , 1986, Cell.

[49]  H. Horvitz,et al.  Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. , 1985, Genetics.

[50]  J Kimble,et al.  Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. , 1981, Developmental biology.

[51]  D. Brann,et al.  Transforming growth factor-β , 2007, Cell Biochemistry and Biophysics.

[52]  I. Greenwald,et al.  lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. , 2005, Developmental cell.

[53]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[54]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[55]  H. Horvitz,et al.  The multivulva phenotype of certain C. elegans mutants results from defects in two functionally redundant pathways , 1989 .