Zeta Functions for Higher-Dimensional Shifts of Finite Type

This work investigates zeta functions for d-dimensional shifts of finite type, d ≥ 3. First, the three-dimensional case is studied. The trace operator Ta1,a2;b12 and rotational matrices Rx;a1,a2;b12 and Ry;a1,a2;b12 are introduced to study ${\scriptsize\left[\begin{array}{@{}c@{\quad}c@{\quad}c@{}} a_{1} & b_{12} & b_{23}\\[1pt] 0 & a_{2} & b_{23} \\[1pt] 0 & 0 & a_{3} \end{array}\right]}$ -periodic patterns. The rotational symmetry of Ta1,a2;b12 induces the reduced trace operator τa1,a2;b12 and then the associated zeta function ζa1,a2;b12 = (det(I-sa1a2τa1,a2;b12))-1. The zeta function ζ is then expressed as $\zeta=\prod_{a_{1}=1}^{\infty}\prod_{a_{2}=1}^{\infty} \prod_{b_{12}=0}^{a_{1}-1}\zeta_{a_{1},a_{2};b_{12}}$, a reciprocal of an infinite product of polynomials. The results hold for any inclined coordinates, determined by unimodular transformation in GL3(ℤ). Hence, a family of zeta functions exists with the same integer coefficients in their Taylor series expansions at the origin, and yields a fami...

[1]  Jung-Chao Ban,et al.  Three-Dimensional Cellular Neural Networks and Pattern Generation Problems , 2008, Int. J. Bifurc. Chaos.

[2]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[3]  S. Ramanujan,et al.  On the Coefficients in the Expansions of Certain Modular Functions , 1918 .

[4]  David Fried,et al.  Finitely presented dynamical systems , 1987, Ergodic Theory and Dynamical Systems.

[5]  Barry Mazur,et al.  On Periodic Points , 1965 .

[6]  Jung-Chao Ban,et al.  Patterns Generation and Spatial Entropy in Two-dimensional Lattice Models , 2007 .

[7]  Chih-Wen Shih,et al.  Exact Number of Mosaic Patterns in Cellular Neural Networks , 2001, Int. J. Bifurc. Chaos.

[8]  Cheng-Hsiung Hsu,et al.  Spatial Disorder of Cellular Neural Networks - with Biased Term , 2002, Int. J. Bifurc. Chaos.

[9]  C. C. Macduffee,et al.  The Theory of Matrices , 1933 .

[10]  Cheng-Hsiung Hsu,et al.  Spatial disorder of CNN - with Asymmetric output Function , 2001, Int. J. Bifurc. Chaos.

[11]  M. Bousquet-Mélou,et al.  Exactly Solved Models , 2009 .

[12]  Leon O. Chua,et al.  Equivalent CNN Cell Models and Patterns , 2003, Int. J. Bifurc. Chaos.

[13]  Song-Sun Lin,et al.  On the Spatial Entropy and Patterns of Two-Dimensional Cellular Neural Networks , 2002, Int. J. Bifurc. Chaos.

[14]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[15]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[16]  Wen-Wei Lin,et al.  The Spatial Entropy of Two-Dimensional Subshifts of Finite Type , 2000, Int. J. Bifurc. Chaos.

[17]  L. Chua Cnn: A Paradigm for Complexity , 1998 .

[18]  Klaus Schmidt,et al.  Automorphisms of compact groups , 1989, Ergodic Theory and Dynamical Systems.

[19]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[20]  Klaus Schmidt,et al.  Mahler measure and entropy for commuting automorphisms of compact groups , 1990 .

[21]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[22]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[23]  Leon O. Chua,et al.  Image Processing and Self-Organizing CNN , 2005, Int. J. Bifurc. Chaos.

[24]  Anthony Manning,et al.  Axiom A Diffeomorphisms have Rational Zeta Functions , 1971 .

[25]  Leon O. Chua,et al.  Pattern formation properties of autonomous Cellular Neural Networks , 1995 .

[26]  Shui-Nee Chow,et al.  DYNAMICS OF LATTICE DIFFERENTIAL EQUATIONS , 1996 .

[27]  G. Hardy,et al.  Asymptotic Formulӕ for the Distribution of Integers of Various Types , 1917 .

[28]  Jonq Juang,et al.  Cellular Neural Networks: Mosaic Pattern and Spatial Chaos , 2000, SIAM J. Appl. Math..

[29]  E. Lieb Exact Solution of the Problem of the Entropy of Two-Dimensional Ice , 1967 .

[30]  Elliott H. Lieb,et al.  Residual Entropy of Square Ice , 1967 .

[31]  Shui-Nee Chow,et al.  Pattern formation and spatial chaos in lattice dynamical systems. II , 1995 .

[32]  Song-Sun Lin,et al.  Spatial Entropy of One-Dimensional Cellular Neural Network , 2000, Int. J. Bifurc. Chaos.

[33]  Michael E. Paul,et al.  Matrix Subshifts for Zv Symbolic Dynamics , 1981 .

[34]  Klaus Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[35]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[36]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[37]  Jung-Chao Ban,et al.  Patterns generation and transition matrices in multi-dimensional lattice models , 2005 .

[38]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[39]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[40]  R. Baxter Eight-Vertex Model in Lattice Statistics , 1971 .

[41]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[42]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Spatially Discrete Evolution Equations , 1995 .