Self-focusing on bounded domains

The critical nonlinear Schrodinger equation (NLS) on bounded domains models the propagation of cw laser beams in hollow-core fibers. Unlike the NLS on unbounded domains which models propagation in bulk media, the ground-state waveguide solutions are stable and the condition of critical power for singularity formation is generically sharp.

[1]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[2]  T. Brabec,et al.  Nonlinear source for the generation of high-energy few-cycle optical pulses. , 1998, Optics letters.

[3]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[4]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[5]  M. Grillakis Existence of nodal solutions of semilinear equations in RN , 1990 .

[6]  E. Marcatili,et al.  Hollow metallic and dielectric waveguides for long distance optical transmission and lasers , 1964 .

[7]  T. Brabec,et al.  Optical pulse compression: bulk media versus hollow waveguides. , 2000, Optics letters.

[8]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[9]  O. Svelto,et al.  Generation of high-energy 10-fs pulses by a new pulse compression technique , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[10]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[11]  T. Brabec,et al.  Theory of self-focusing in a hollow waveguide. , 1998, Optics letters.

[12]  Gadi Fibich,et al.  Self-Focusing in the Damped Nonlinear Schrödinger Equation , 2001, SIAM J. Appl. Math..

[13]  Gadi Fibich,et al.  Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation , 2000 .

[14]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[15]  O. Kavian,et al.  A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1987 .

[16]  Yoshio Tsutsumi,et al.  L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity , 1990 .

[17]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[18]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[19]  Frank Merle,et al.  Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations. , 1998 .

[20]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[21]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[22]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[23]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[24]  Frank Merle,et al.  On uniqueness and continuation properties after blow‐up time of self‐similar solutions of nonlinear schrödinger equation with critical exponent and critical mass , 1992 .

[25]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[26]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[27]  Michael I. Weinstein,et al.  On the bound states of the nonlinear Schrödinger equation with a linear potential , 1988 .

[28]  O. Svelto,et al.  A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses , 1997 .

[29]  Jean Bourgain,et al.  Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .

[30]  Nonlinear propagation dynamics of an ultrashort pulse in a hollow waveguide. , 2000, Optics letters.

[31]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[32]  G Fibich,et al.  Critical power for self-focusing in bulk media and in hollow waveguides. , 2000, Optics letters.

[33]  S. Silvestri,et al.  Compression of high-energy laser pulses below 5 fs. , 1997, Optics letters.