Weighted Norm Inequalities and Closedness of a Space of Stochastic Integrals

Let X be an IR-valued special semimartingale on a probability space (Ω,F , (Ft)0≤t≤T , P ) with canonical decomposition X = X0 + M + A. Denote by GT (Θ) the space of all random variables (θ ·X)T , where θ is a predictable X-integrable process such that the stochastic integral θ ·X is in the space S2 of semimartingales. We investigate under which conditions on the semimartingale X the space GT (Θ) is closed in L2(Ω,F , P ), a question which arises naturally in the applications to financial mathematics. Our main results give necessary and/or sufficient conditions for the closedness of GT (Θ) in L2(P ). Most of these conditions deal with BMO-martingales and reverse Hölder inequalities which are equivalent to weighted norm inequalities. By means of these last inequalities, we also extend previous results on the Föllmer-Schweizer decomposition.

[1]  風巻 紀彦,et al.  Continuous exponential martingales and BMO , 1994 .

[2]  M. Yor,et al.  Sous-Espaces Denses dans L1 ou H1 et Representation des Martingales , 1978 .

[3]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[4]  W. Schachermayer,et al.  A COUNTER-EXAMPLE TO SEVERAL PROBLEMS IN THE THEORY OF ASSET PRICING , 1993 .

[5]  Pascale Monat,et al.  Inégalités de normes avec poids et fermeture d'un espace d'intégrales stochastiques , 1994 .

[6]  C. Stricker,et al.  Follmer-Schweizer Decomposition and Mean-Variance Hedging for General Claims , 1995 .

[7]  Christophe Stricker,et al.  Deux applications de la décomposition de Galtchouk-Kunita-Watanabe , 1996 .

[8]  R. Durrett Brownian motion and martingales in analysis , 1984 .

[9]  Damien Lamberton,et al.  Residual risks and hedging strategies in Markovian markets , 1989 .

[10]  M. Schweizer Option hedging for semimartingales , 1991 .

[11]  Walter Schachermayer,et al.  The variance-optimal martingale measure for continuous processes , 1996 .

[12]  Christophe Stricker,et al.  Arbitrage et lois de martingale , 1990 .

[13]  Freddy Delbaen,et al.  A note on the no arbitrage condition for international financial markets , 1996 .

[14]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[15]  C. Doléans-Dade,et al.  Inegalites de normes avec poids , 1979 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Walter Schachermayer,et al.  A Simple Counterexample to Several Problems in the Theory of Asset Pricing , 1993 .

[18]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[19]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[20]  Martin Schweizer,et al.  Approximating random variables by stochastic integrals , 1994 .

[21]  D. Duffie,et al.  Mean-variance hedging in continuous time , 1991 .

[22]  Walter Schachermayer,et al.  The Existence of Absolutely Continuous Local Martingale Measures (1995) , 1995 .

[23]  Christophe Stricker,et al.  Lois de martingale, densités et décomposition de Föllmer Schweizer , 1992 .

[24]  Yan Jia-An,et al.  Caractérisation d’une classe d’ensembles convexes de $L^1$ ou $H^1$ , 1980 .

[25]  P. Protter Stochastic integration and differential equations , 1990 .

[26]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[27]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[28]  M. Yor,et al.  Inegalités de martingales continues arretées à un temps quelconque , 1985 .

[29]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[30]  Martin Schweizer,et al.  Variance-Optimal Hedging in Discrete Time , 1995, Math. Oper. Res..

[31]  H. Kunita,et al.  On Square Integrable Martingales , 1967, Nagoya Mathematical Journal.